TY - JOUR
T1 - An evaluation of multiple annealing and looping based genome amplification using a synthetic bacterial community
AU - Wang, Yong
AU - Gao, Zhaoming
AU - Xu, Ying
AU - Li, Guangyu
AU - He, Lisheng
AU - Qian, Pei-Yuan
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): SAC0040, UK-C0016
Acknowledgements: The Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) under contract Nos XDB06010100 and XDB06010200; the National Basic Research Program (973 Program) of China under contract No. 2012CB417304; the National Natural Science Foundation of China under contract No. U1301232; the Sanya Institute of Deep Sea Science and Engineering under contract Nos SIDSSE- 201206, SIDSSE-BR-201303 and SIDSSE-201305; the award from King Abdullah University of Science and Technology under contract No. SAC0040/ UK-C0016.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2016/2/24
Y1 - 2016/2/24
N2 - The low biomass in environmental samples is a major challenge for microbial metagenomic studies. The amplification of a genomic DNA was frequently applied to meeting the minimum requirement of the DNA for a high-throughput next-generation-sequencing technology. Using a synthetic bacterial community, the amplification efficiency of the Multiple Annealing and Looping Based Amplification Cycles (MALBAC) kit that is originally developed to amplify the single-cell genomic DNA of mammalian organisms is examined. The DNA template of 10 pg in each reaction of the MALBAC amplification may generate enough DNA for Illumina sequencing. Using 10 pg and 100 pg templates for each reaction set, the MALBAC kit shows a stable and homogeneous amplification as indicated by the highly consistent coverage of the reads from the two amplified samples on the contigs assembled by the original unamplified sample. Although GenomePlex whole genome amplification kit allows one to generate enough DNA using 100 pg of template in each reaction, the minority of the mixed bacterial species is not linearly amplified. For both of the kits, the GC-rich regions of the genomic DNA are not efficiently amplified as suggested by the low coverage of the contigs with the high GC content. The high efficiency of the MALBAC kit is supported for the amplification of environmental microbial DNA samples, and the concerns on its application are also raised to bacterial species with the high GC content.
AB - The low biomass in environmental samples is a major challenge for microbial metagenomic studies. The amplification of a genomic DNA was frequently applied to meeting the minimum requirement of the DNA for a high-throughput next-generation-sequencing technology. Using a synthetic bacterial community, the amplification efficiency of the Multiple Annealing and Looping Based Amplification Cycles (MALBAC) kit that is originally developed to amplify the single-cell genomic DNA of mammalian organisms is examined. The DNA template of 10 pg in each reaction of the MALBAC amplification may generate enough DNA for Illumina sequencing. Using 10 pg and 100 pg templates for each reaction set, the MALBAC kit shows a stable and homogeneous amplification as indicated by the highly consistent coverage of the reads from the two amplified samples on the contigs assembled by the original unamplified sample. Although GenomePlex whole genome amplification kit allows one to generate enough DNA using 100 pg of template in each reaction, the minority of the mixed bacterial species is not linearly amplified. For both of the kits, the GC-rich regions of the genomic DNA are not efficiently amplified as suggested by the low coverage of the contigs with the high GC content. The high efficiency of the MALBAC kit is supported for the amplification of environmental microbial DNA samples, and the concerns on its application are also raised to bacterial species with the high GC content.
UR - http://hdl.handle.net/10754/623513
UR - http://link.springer.com/10.1007/s13131-015-0781-x
UR - http://www.scopus.com/inward/record.url?scp=84959320547&partnerID=8YFLogxK
U2 - 10.1007/s13131-015-0781-x
DO - 10.1007/s13131-015-0781-x
M3 - Article
SN - 0253-505X
VL - 35
SP - 131
EP - 136
JO - Acta Oceanologica Sinica
JF - Acta Oceanologica Sinica
IS - 2
ER -