TY - GEN
T1 - An Experimental and Numerical Study of N-Dodecane/Butanol Blends for Compression Ignition Engines
AU - Wakale, Anil Bhaurao
AU - Mohamed, Samah
AU - Naser, Nimal
AU - Jaasim, Mohammed
AU - Banerjee, Raja
AU - Im, Hong G.
AU - Sarathy, Mani
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was funded by competitive research funding from King Abdullah University of Science and Technology (KAUST) under the Clean Combustion Research Center internship program in collaboration with IIT Hyderabad. We would like to express our gratitude to Research Scholar Mr. Eshan Singh, for his support in carrying out Experiments at KAUST.
PY - 2018/4/3
Y1 - 2018/4/3
N2 - Alcohols are potential blending agents for diesel that can be effectively used in compression ignition engines. This work investigates the use of n-butanol as a blending component for diesel fuel using experiments and simulations. Dodecane was selected as a surrogate for diesel fuel and various concentrations of n-butanol were added to study ignition characteristics. Ignition delay times for different n-butanol/dodecane blends were measured using the ignition quality tester at KAUST (KR-IQT). The experiments were conducted at pressure of 21 and 18 bar, temperature ranging from 703-843 K and global equivalence ratio of 0.85. A skeletal mechanism for n-dodecane and n-butanol blends with 203 species was developed for numerical simulations. The mechanism was developed by combining n-dodecane skeletal mechanism containing 106 species and a detailed mechanism for all the butanol isomers. The new mixture mechanism was validated for various pressure, temperature and equivalence ratio using a 0-D homogeneous reactor model from CHEMKIN for pure base fuels (n-dodecane and butanol). Computational fluid dynamics (CFD) code, CONVERGE was used to further validate the new mechanism. The new mechanism was able to reproduce the experimental results from IQT at different pressure and temperature conditions.
AB - Alcohols are potential blending agents for diesel that can be effectively used in compression ignition engines. This work investigates the use of n-butanol as a blending component for diesel fuel using experiments and simulations. Dodecane was selected as a surrogate for diesel fuel and various concentrations of n-butanol were added to study ignition characteristics. Ignition delay times for different n-butanol/dodecane blends were measured using the ignition quality tester at KAUST (KR-IQT). The experiments were conducted at pressure of 21 and 18 bar, temperature ranging from 703-843 K and global equivalence ratio of 0.85. A skeletal mechanism for n-dodecane and n-butanol blends with 203 species was developed for numerical simulations. The mechanism was developed by combining n-dodecane skeletal mechanism containing 106 species and a detailed mechanism for all the butanol isomers. The new mixture mechanism was validated for various pressure, temperature and equivalence ratio using a 0-D homogeneous reactor model from CHEMKIN for pure base fuels (n-dodecane and butanol). Computational fluid dynamics (CFD) code, CONVERGE was used to further validate the new mechanism. The new mechanism was able to reproduce the experimental results from IQT at different pressure and temperature conditions.
UR - http://hdl.handle.net/10754/627594
UR - https://saemobilus.sae.org/content/2018-01-0240
UR - http://www.scopus.com/inward/record.url?scp=85045442205&partnerID=8YFLogxK
U2 - 10.4271/2018-01-0240
DO - 10.4271/2018-01-0240
M3 - Conference contribution
BT - SAE Technical Paper Series
PB - SAE International
ER -