TY - JOUR
T1 - An experimental study of turbulent lifted flames at elevated pressures
AU - Guiberti, Thibault
AU - Boyette, Wesley
AU - Masri, Assaad R.
AU - Roberts, William L.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST). Prof. Masri is supported by the Australian Research Council.
PY - 2019/2/28
Y1 - 2019/2/28
N2 - Studying the lift-off behavior of non-premixed jet flames is important to understanding the flame stabilization mechanisms in practical systems, including gas flares and combustors, and to improving the safety of pressurized fuel tanks in case of fuel leaks. This is typically done with the canonical configuration of an axisymmetric fuel jet issuing into a quiescent or co-flowing oxidizer and abundant data are available in the literature. However, most of these data were collected at normal or sub-atmospheric pressure and little data are available at elevated pressure and high Reynolds numbers, conditions relevant to practical configurations. The present study fills this gap by reporting lift-off height measurements of methane and ethane non-premixed jet flames for pressures up to 7 bar and Re = 57,500 in the presence of an air co-flow. Data are interpreted using Kalghatgi's model for the dimensionless lift-off height, which was previously proven successful for sub-atmospheric to normal pressures, as well as elevated pressure but only for low turbulent Reynolds numbers and propane. In this contribution, Kalghatgi's model has been shown to accurately predict the slope of the lift-off height vs. jet velocity curves at elevated pressure and large Reynolds number for methane and ethane. A new term, a function of the stoichiometric mixture fraction, the laminar burning velocity, and a turbulent Schmidt number, is also introduced to extend the predictive capabilities of Kalghatgi's model to configurations featuring a co-flow.
AB - Studying the lift-off behavior of non-premixed jet flames is important to understanding the flame stabilization mechanisms in practical systems, including gas flares and combustors, and to improving the safety of pressurized fuel tanks in case of fuel leaks. This is typically done with the canonical configuration of an axisymmetric fuel jet issuing into a quiescent or co-flowing oxidizer and abundant data are available in the literature. However, most of these data were collected at normal or sub-atmospheric pressure and little data are available at elevated pressure and high Reynolds numbers, conditions relevant to practical configurations. The present study fills this gap by reporting lift-off height measurements of methane and ethane non-premixed jet flames for pressures up to 7 bar and Re = 57,500 in the presence of an air co-flow. Data are interpreted using Kalghatgi's model for the dimensionless lift-off height, which was previously proven successful for sub-atmospheric to normal pressures, as well as elevated pressure but only for low turbulent Reynolds numbers and propane. In this contribution, Kalghatgi's model has been shown to accurately predict the slope of the lift-off height vs. jet velocity curves at elevated pressure and large Reynolds number for methane and ethane. A new term, a function of the stoichiometric mixture fraction, the laminar burning velocity, and a turbulent Schmidt number, is also introduced to extend the predictive capabilities of Kalghatgi's model to configurations featuring a co-flow.
UR - http://hdl.handle.net/10754/631886
UR - https://www.sciencedirect.com/science/article/pii/S0010218019300872
UR - http://www.scopus.com/inward/record.url?scp=85062155507&partnerID=8YFLogxK
U2 - 10.1016/j.combustflame.2019.02.023
DO - 10.1016/j.combustflame.2019.02.023
M3 - Article
SN - 0010-2180
VL - 203
SP - 301
EP - 312
JO - Combustion and Flame
JF - Combustion and Flame
ER -