TY - JOUR
T1 - An experimental study on the spectral dependence of light extinction in sooting ethylene counterflow diffusion flames
AU - Yan, Fuwu
AU - Zhou, Mengxiang
AU - Xu, Lei
AU - Wang, Yu
AU - Chung, Suk-Ho
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was supported by the Natural Science Foundation of China (51606136), National Key R&D Program of China (2017YFC0211201), and the 111 Project (B17034). SHC was supported by King Abdullah University of Science and Technology.
PY - 2018/9/18
Y1 - 2018/9/18
N2 - A light extinction technique is widely-adopted for quantitative measurement of soot volume fractions. The measurement accuracy is dependent on the optical properties of soot, which are expected to vary with the wavelength of incident light and physicochemical environments in which soot is formed. In the present study, a diode laser based light extinction setup, capable of providing light with variable wavelengths ranging from 405 to 1064 nm, was utilized to investigate the in-situ spectral dependence of light absorption for soot formed in counterflow diffusion flames. Soot volume fractions (FV) were inferred from the extinction level of these laser beams for a series of flames parameterized by oxygen/fuel mole fractions, nozzle exit velocities, and fuel types. Special attention was given to distinguish between the soot formation (SF) and soot formation/oxidation (SFO) flames, considering their notable differences in soot evolutions. It was found that the inferred FV as measured with visible light (405−670 nm) was always significantly higher than those measured with near-infrared light (> 780 nm). In addition, the quantitative decrease of FV with the increase in light wavelength (λ) was found to be different for soot particles formed at different flame locations and/or flame conditions, even in the spectral range above 780 nm for which polycyclic aromatic hydrocarbon (PAH) interferences are expected to be minimal. This confirms the wavelength dependence of the soot optical property E(m). In particular, the value of E(m) tends to decrease with increasing wavelength and the rate of decrease is lower for more mature soot particles. Furthermore, by fitting the extinction coefficient with wavelength in the near-infrared range, the quantitative relation of E(m) with λ was derived and compared among various flame conditions. The present study demonstrates that soot formed at different conditions have different optical properties. The results are also expected to provide essential information for uncertainty evaluation in literature FV data in counterflow diffusion flames as measured with light extinction, especially for those performed with visible light sources where PAH interference may not be negligible.
AB - A light extinction technique is widely-adopted for quantitative measurement of soot volume fractions. The measurement accuracy is dependent on the optical properties of soot, which are expected to vary with the wavelength of incident light and physicochemical environments in which soot is formed. In the present study, a diode laser based light extinction setup, capable of providing light with variable wavelengths ranging from 405 to 1064 nm, was utilized to investigate the in-situ spectral dependence of light absorption for soot formed in counterflow diffusion flames. Soot volume fractions (FV) were inferred from the extinction level of these laser beams for a series of flames parameterized by oxygen/fuel mole fractions, nozzle exit velocities, and fuel types. Special attention was given to distinguish between the soot formation (SF) and soot formation/oxidation (SFO) flames, considering their notable differences in soot evolutions. It was found that the inferred FV as measured with visible light (405−670 nm) was always significantly higher than those measured with near-infrared light (> 780 nm). In addition, the quantitative decrease of FV with the increase in light wavelength (λ) was found to be different for soot particles formed at different flame locations and/or flame conditions, even in the spectral range above 780 nm for which polycyclic aromatic hydrocarbon (PAH) interferences are expected to be minimal. This confirms the wavelength dependence of the soot optical property E(m). In particular, the value of E(m) tends to decrease with increasing wavelength and the rate of decrease is lower for more mature soot particles. Furthermore, by fitting the extinction coefficient with wavelength in the near-infrared range, the quantitative relation of E(m) with λ was derived and compared among various flame conditions. The present study demonstrates that soot formed at different conditions have different optical properties. The results are also expected to provide essential information for uncertainty evaluation in literature FV data in counterflow diffusion flames as measured with light extinction, especially for those performed with visible light sources where PAH interference may not be negligible.
UR - http://hdl.handle.net/10754/628760
UR - http://www.sciencedirect.com/science/article/pii/S089417771830983X
UR - http://www.scopus.com/inward/record.url?scp=85053774356&partnerID=8YFLogxK
U2 - 10.1016/j.expthermflusci.2018.09.008
DO - 10.1016/j.expthermflusci.2018.09.008
M3 - Article
SN - 0894-1777
VL - 100
SP - 259
EP - 270
JO - Experimental Thermal and Fluid Science
JF - Experimental Thermal and Fluid Science
ER -