An hp-local Discontinuous Galerkin Method for Parabolic Integro-Differential Equations

Amiya K. Pani, Sangita Yadav

    Research output: Contribution to journalArticlepeer-review

    16 Scopus citations


    In this article, a priori error bounds are derived for an hp-local discontinuous Galerkin (LDG) approximation to a parabolic integro-differential equation. It is shown that error estimates in L 2-norm of the gradient as well as of the potential are optimal in the discretizing parameter h and suboptimal in the degree of polynomial p. Due to the presence of the integral term, an introduction of an expanded mixed type Ritz-Volterra projection helps us to achieve optimal estimates. Further, it is observed that a negative norm estimate of the gradient plays a crucial role in our convergence analysis. As in the elliptic case, similar results on order of convergence are established for the semidiscrete method after suitably modifying the numerical fluxes. The optimality of these theoretical results is tested in a series of numerical experiments on two dimensional domains. © 2010 Springer Science+Business Media, LLC.
    Original languageEnglish (US)
    Pages (from-to)71-99
    Number of pages29
    JournalJournal of Scientific Computing
    Issue number1
    StatePublished - Jun 6 2010


    Dive into the research topics of 'An hp-local Discontinuous Galerkin Method for Parabolic Integro-Differential Equations'. Together they form a unique fingerprint.

    Cite this