TY - CHAP
T1 - An Improved Wavelet-Based Multivariable Fault Detection Scheme
AU - Harrou, Fouzi
AU - Sun, Ying
AU - Madakyaru, Muddu
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): OSR-2015-CRG4-2582
Acknowledgements: This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No: OSR-2015-CRG4-2582.
PY - 2017/7/5
Y1 - 2017/7/5
N2 - Data observed from environmental and engineering processes are usually noisy and correlated in time, which makes the fault detection more difficult as the presence of noise degrades fault detection quality. Multiscale representation of data using wavelets is a powerful feature extraction tool that is well suited to denoising and decorrelating time series data. In this chapter, we combine the advantages of multiscale partial least squares (MSPLSs) modeling with those of the univariate EWMA (exponentially weighted moving average) monitoring chart, which results in an improved fault detection system, especially for detecting small faults in highly correlated, multivariate data. Toward this end, we applied EWMA chart to the output residuals obtained from MSPLS model. It is shown through simulated distillation column data the significant improvement in fault detection can be obtained by using the proposed methods as compared to the use of the conventional partial least square (PLS)-based Q and EWMA methods and MSPLS-based Q method.
AB - Data observed from environmental and engineering processes are usually noisy and correlated in time, which makes the fault detection more difficult as the presence of noise degrades fault detection quality. Multiscale representation of data using wavelets is a powerful feature extraction tool that is well suited to denoising and decorrelating time series data. In this chapter, we combine the advantages of multiscale partial least squares (MSPLSs) modeling with those of the univariate EWMA (exponentially weighted moving average) monitoring chart, which results in an improved fault detection system, especially for detecting small faults in highly correlated, multivariate data. Toward this end, we applied EWMA chart to the output residuals obtained from MSPLS model. It is shown through simulated distillation column data the significant improvement in fault detection can be obtained by using the proposed methods as compared to the use of the conventional partial least square (PLS)-based Q and EWMA methods and MSPLS-based Q method.
UR - http://hdl.handle.net/10754/625210
UR - https://www.intechopen.com/books/uncertainty-quantification-and-model-calibration/an-improved-wavelet-based-multivariable-fault-detection-scheme
U2 - 10.5772/intechopen.68947
DO - 10.5772/intechopen.68947
M3 - Chapter
SN - 9789535132790
BT - Uncertainty Quantification and Model Calibration
PB - IntechOpen
ER -