Original language | English (US) |
---|---|
Pages (from-to) | 494-503 |
Number of pages | 10 |
Journal | Nat. Mach. Intell. |
Volume | 4 |
Issue number | 5 |
DOIs | |
State | Published - 2022 |
An interpretable deep learning workflow for discovering subvisual abnormalities in CT scans of COVID-19 inpatients and survivors.
Longxi Zhou, Xianglin Meng, Yuxin Huang, Kai Kang, Juexiao Zhou, Yuetan Chu, Haoyang Li, Dexuan Xie, Jiannan Zhang, Weizhen Yang, Na Bai, Yi Zhao, Mingyan Zhao, Guohua Wang, Lawrence Carin, Xigang Xiao, Kaijiang Yu, Zhaowen Qiu, Xin Gao
Research output: Contribution to journal › Article › peer-review
20
Scopus
citations