TY - GEN
T1 - An ultra-low-power bioamplifier for implantable large-scale recording of neural activity
AU - Li, Yang Guo
AU - Ma, Qingyun
AU - Haider, Mohammad Rafiqul
AU - Massoud, Yehia
N1 - Generated from Scopus record by KAUST IRTS on 2022-09-13
PY - 2013/9/9
Y1 - 2013/9/9
N2 - Power dissipation of bioamplifiers has become one of the most critical factors for up-to-date implantable neural recording microsystems as the increasing of recording channels. This paper presents an ultra-low-power bioamplifier which is designed for the very-large-scale integration of neural recordings. To reduce the power, the proposed bioamplifier is designed to work with a 0.5 V power supply and all MOSFETs operate at weak inversion region. Both folded-cascode and wide-swing structures are employed to fully exploit the output swing. By producing a 18/1 bias current ratio between input transistors and load current mirror, the noise performance of the proposed bioamplifier is optimized for the given power dissipation. Designed in a 0.13-μm CMOS process, the proposed bioamplifier consumes only 61.7 nW power to obtain a gain of 23.8 dB and a bandwidth of 3.6 KHz. The input-referred noise over the entire bandwidth is 12.7 μVrms, corresponding to a noise-efficiency factor of 3.1. © 2013 IEEE.
AB - Power dissipation of bioamplifiers has become one of the most critical factors for up-to-date implantable neural recording microsystems as the increasing of recording channels. This paper presents an ultra-low-power bioamplifier which is designed for the very-large-scale integration of neural recordings. To reduce the power, the proposed bioamplifier is designed to work with a 0.5 V power supply and all MOSFETs operate at weak inversion region. Both folded-cascode and wide-swing structures are employed to fully exploit the output swing. By producing a 18/1 bias current ratio between input transistors and load current mirror, the noise performance of the proposed bioamplifier is optimized for the given power dissipation. Designed in a 0.13-μm CMOS process, the proposed bioamplifier consumes only 61.7 nW power to obtain a gain of 23.8 dB and a bandwidth of 3.6 KHz. The input-referred noise over the entire bandwidth is 12.7 μVrms, corresponding to a noise-efficiency factor of 3.1. © 2013 IEEE.
UR - http://ieeexplore.ieee.org/document/6572767/
UR - http://www.scopus.com/inward/record.url?scp=84883429026&partnerID=8YFLogxK
U2 - 10.1109/WAMICON.2013.6572767
DO - 10.1109/WAMICON.2013.6572767
M3 - Conference contribution
SN - 9781467355360
BT - 2013 IEEE 14th Annual Wireless and Microwave Technology Conference, WAMICON 2013
ER -