TY - JOUR
T1 - Analysis of active cooling panels in a scramjet combustor considering the thermal cracking of hydrocarbon fuel
AU - Sreekireddy, Pavani
AU - Reddy, Tadisina Kishen Kumar
AU - Selvaraj, Prabhu
AU - Reddy, Vanteru Mahendra
AU - Lee, Bok Jik
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors would like to acknowledge the support received for this work from the Defense Research Development Laboratory, Hyderabad-India. The authors are also thankful to Nour Atef, Ahfaz Ahmed and Samah Mohamed for their help for developing the plug flow reactor models at the Clean Combustion Research Center, KAUST, Saudi Arabia. This work was supported by the Advanced Research Center (2013R1A5A1073861) and Basic Science Research (2017R1A2B4003327) through the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSICT).
PY - 2018/10/20
Y1 - 2018/10/20
N2 - In this paper, a procedure is demonstrated for the numerical analysis of a cooling system using active panels for high-speed combustion chambers subjected to high thermo-mechanical loads. A promising alloy for high heat loads, namely, niobium Cb-752, is considered in this study. In addition to sensible heat transfer, endothermic heat absorption through the cracked hydrocarbon fuels is a viable option for cooling the chamber panels. The focus of the panel design is to minimize the weight with the safe thermo-mechanical characteristics of the panel. The present analysis is carried out in three steps. First, a one-dimensional (1D) analytical model is developed. The second and third steps are three-dimensional (3D) analyses without and with consideration of fuel endothermicity, respectively. The optimal channel dimensions obtained from the 1D analysis provide inputs for the 3D analysis. The channel dimensions obtained from the 1D analysis do not satisfy the targeted parameters in the 3D analysis. Thus, the channel is redesigned in 3D and tested with and without cracking. The channel dimensions are optimized for the ranges of heat fluxes (160–220 W/cm) in the combustor and mass flow rates (0.011–0.015 kg/s) of the fuel in the channel. Reducing the weight of the panel is sought by considering the benefit of heat absorption through the endothermic cracking process in the fuel channel. The combination of an increased width and cracking performs better than the other non-cracking cases. The study presents the most efficient configuration suitable for applications in high-speed combustion chambers under the given heat flux conditions. By increasing the channel width and cracking (for 3D), the weight of the panel is reduced by 10.58%. The fuel exit temperature, fuel cracking behavior in the channel, structural stress distribution and weight of the panel are analyzed in terms of the operating conditions.
AB - In this paper, a procedure is demonstrated for the numerical analysis of a cooling system using active panels for high-speed combustion chambers subjected to high thermo-mechanical loads. A promising alloy for high heat loads, namely, niobium Cb-752, is considered in this study. In addition to sensible heat transfer, endothermic heat absorption through the cracked hydrocarbon fuels is a viable option for cooling the chamber panels. The focus of the panel design is to minimize the weight with the safe thermo-mechanical characteristics of the panel. The present analysis is carried out in three steps. First, a one-dimensional (1D) analytical model is developed. The second and third steps are three-dimensional (3D) analyses without and with consideration of fuel endothermicity, respectively. The optimal channel dimensions obtained from the 1D analysis provide inputs for the 3D analysis. The channel dimensions obtained from the 1D analysis do not satisfy the targeted parameters in the 3D analysis. Thus, the channel is redesigned in 3D and tested with and without cracking. The channel dimensions are optimized for the ranges of heat fluxes (160–220 W/cm) in the combustor and mass flow rates (0.011–0.015 kg/s) of the fuel in the channel. Reducing the weight of the panel is sought by considering the benefit of heat absorption through the endothermic cracking process in the fuel channel. The combination of an increased width and cracking performs better than the other non-cracking cases. The study presents the most efficient configuration suitable for applications in high-speed combustion chambers under the given heat flux conditions. By increasing the channel width and cracking (for 3D), the weight of the panel is reduced by 10.58%. The fuel exit temperature, fuel cracking behavior in the channel, structural stress distribution and weight of the panel are analyzed in terms of the operating conditions.
UR - http://hdl.handle.net/10754/630614
UR - http://www.sciencedirect.com/science/article/pii/S1359431117377426
UR - http://www.scopus.com/inward/record.url?scp=85055282080&partnerID=8YFLogxK
U2 - 10.1016/j.applthermaleng.2018.10.078
DO - 10.1016/j.applthermaleng.2018.10.078
M3 - Article
SN - 1359-4311
VL - 147
SP - 231
EP - 241
JO - Applied Thermal Engineering
JF - Applied Thermal Engineering
ER -