Abstract
Perovskite solar cells (PSCs) via two-step sequential method have received great attention in recent years due to their high reproducibility and low processing costs. However, the relatively high trap-state density and poor charge carrier extraction efficiency pose challenges. Herein, highly efficient and stable PSCs via a two-step sequential method are fabricated using organic—inorganic (OI) complexes as multifunctional interlayers. In addition to reduce the under-coordinated Pb2+ ions related trap states by forming interactions with the functional groups, the complexes interlayer tends to form dipole moment which can enhance the built-in electric field, thus facilitating charge carrier extraction. Consequently, with rational molecular design, the resulting devices with a vertical dipole moment that parallels with the built-in electric field yield a champion efficiency of 23.55% with negligible hysteresis. More importantly, the hydrophobicity of the (OI) complexes contributes to an excellent ambient stability of the resulting device with 91% of initial efficiency maintained after 3000 h storage.
Original language | English (US) |
---|---|
Journal | Advanced Science |
Volume | 9 |
Issue number | 29 |
DOIs | |
State | Published - Oct 1 2022 |
Externally published | Yes |