TY - JOUR
T1 - Angular dependence and symmetry of Rashba spin torque in ferromagnetic heterostructures
AU - Ortiz Pauyac, Christian
AU - Wang, Xuhui
AU - Chshiev, Mairbek
AU - Manchon, Aurelien
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2013/6/27
Y1 - 2013/6/27
N2 - In a ferromagnetic heterostructure, the interplay between Rashba spin-orbit coupling and exchange splitting gives rise to a current-driven spin torque. In a realistic device setup, we investigate the Rashba spin torque in the diffusive regime and report two major findings: (i) a nonvanishing torque exists at the edges of the device even when the magnetization and effective Rashba field are aligned; (ii) anisotropic spin relaxation rates driven by the Rashba spin-orbit coupling assign the spin torque a general expression T = T y (θ) m × (y × m) + T y (θ) y × m + T z (θ) m × (z × m) + T z (θ) z × m, where the coefficients T, y, z depend on the magnetization direction. Our results agree with recent experiments. © 2013 AIP Publishing LLC.
AB - In a ferromagnetic heterostructure, the interplay between Rashba spin-orbit coupling and exchange splitting gives rise to a current-driven spin torque. In a realistic device setup, we investigate the Rashba spin torque in the diffusive regime and report two major findings: (i) a nonvanishing torque exists at the edges of the device even when the magnetization and effective Rashba field are aligned; (ii) anisotropic spin relaxation rates driven by the Rashba spin-orbit coupling assign the spin torque a general expression T = T y (θ) m × (y × m) + T y (θ) y × m + T z (θ) m × (z × m) + T z (θ) z × m, where the coefficients T, y, z depend on the magnetization direction. Our results agree with recent experiments. © 2013 AIP Publishing LLC.
UR - http://hdl.handle.net/10754/552303
UR - http://scitation.aip.org/content/aip/journal/apl/102/25/10.1063/1.4812663
UR - http://www.scopus.com/inward/record.url?scp=84879876147&partnerID=8YFLogxK
U2 - 10.1063/1.4812663
DO - 10.1063/1.4812663
M3 - Article
SN - 0003-6951
VL - 102
SP - 252403
JO - Applied Physics Letters
JF - Applied Physics Letters
IS - 25
ER -