TY - CHAP
T1 - Application of Inkjet Printing in High-Density Pixelated RGB Quantum Dot-Hybrid LEDs
AU - Haverinen, Hanna
AU - Jabbour, Ghassan E.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: Dr. H.M. Haverinen thanks TEKES (Finnish Funding Agency for Technology and Innovation), Graduate School of Modern Optics and Photonics for funding, Dr. Xiaohui Yang and Mr. Rafal Sliz for technical support. Prof. G.E. Jabbour thanks the Academy of Finland, Distinguished Professor of Finland program, and Fuji Dimatix for their support. The authors also thank Mr. Scott Ageno of the Flexible Display Center at ASU for providing the patterned substrates.
PY - 2012/5/23
Y1 - 2012/5/23
N2 - Recently, an intriguing solution to obtain better color purity has been to introduce inorganic emissive quantum dots (QDs) into an otherwise OLED structure. The emphasis of this chapter is to present a simple discussion of the first attempts to fabricate high-density, pixelated (quarter video graphics array (QVGA) format), monochromatic and RGB quantum dots light-emitting diodes (QDLEDs), where inkjet printing is used to deposit the light-emitting layer of QDs. It shows some of the factors that have to be considered in order to achieve the desired accuracy and printing quality. The successful operation of the RGB printed devices indicates the potential of the inkjet printing approach in the fabrication of full-color QDLEDs for display application. However, further optimization of print quality is still needed in order to eliminate the formation of pinholes, thus maximizing energy transfer from organic layers to the QDs and in turn increasing the performance of the devices. Controlled Vocabulary Terms: ink jet printing; LED displays; LED lamps; organic light emitting diodes; quantum dots
AB - Recently, an intriguing solution to obtain better color purity has been to introduce inorganic emissive quantum dots (QDs) into an otherwise OLED structure. The emphasis of this chapter is to present a simple discussion of the first attempts to fabricate high-density, pixelated (quarter video graphics array (QVGA) format), monochromatic and RGB quantum dots light-emitting diodes (QDLEDs), where inkjet printing is used to deposit the light-emitting layer of QDs. It shows some of the factors that have to be considered in order to achieve the desired accuracy and printing quality. The successful operation of the RGB printed devices indicates the potential of the inkjet printing approach in the fabrication of full-color QDLEDs for display application. However, further optimization of print quality is still needed in order to eliminate the formation of pinholes, thus maximizing energy transfer from organic layers to the QDs and in turn increasing the performance of the devices. Controlled Vocabulary Terms: ink jet printing; LED displays; LED lamps; organic light emitting diodes; quantum dots
UR - http://hdl.handle.net/10754/623423
UR - http://onlinelibrary.wiley.com/doi/10.1002/9783527647101.ch14/summary
UR - http://www.scopus.com/inward/record.url?scp=85017407859&partnerID=8YFLogxK
U2 - 10.1002/9783527647101.ch14
DO - 10.1002/9783527647101.ch14
M3 - Chapter
SN - 9783527647101
SP - 217
EP - 236
BT - Inkjet-Based Micromanufacturing
PB - Wiley
ER -