Application of the Advanced Distillation Curve Method to Fuels for Advanced Combustion Engine Gasolines

Jessica L. Burger, Nico Schneider, Thomas J. Bruno

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

© This article not subject to U.S. Copyright. Published 2015 by the American Chemical Society. Incremental but fundamental changes are currently being made to fuel composition and combustion strategies to diversify energy feedstocks, decrease pollution, and increase engine efficiency. The increase in parameter space (by having many variables in play simultaneously) makes it difficult at best to propose strategic changes to engine and fuel design by use of conventional build-and-test methodology. To make changes in the most time- and cost-effective manner, it is imperative that new computational tools and surrogate fuels are developed. Currently, sets of fuels are being characterized by industry groups, such as the Coordinating Research Council (CRC) and other entities, so that researchers in different laboratories have access to fuels with consistent properties. In this work, six gasolines (FACE A, C, F, G, I, and J) are characterized by the advanced distillation curve (ADC) method to determine the composition and enthalpy of combustion in various distillate volume fractions. Tracking the composition and enthalpy of distillate fractions provides valuable information for determining structure property relationships, and moreover, it provides the basis for the development of equations of state that can describe the thermodynamic properties of these complex mixtures and lead to development of surrogate fuels composed of major hydrocarbon classes found in target fuels.
Original languageEnglish (US)
Pages (from-to)4227-4235
Number of pages9
JournalEnergy & Fuels
Volume29
Issue number7
DOIs
StatePublished - Jun 19 2015
Externally publishedYes

Fingerprint

Dive into the research topics of 'Application of the Advanced Distillation Curve Method to Fuels for Advanced Combustion Engine Gasolines'. Together they form a unique fingerprint.

Cite this