Abstract
Developing a green and energy-saving alternative to the traditional Haber-Bosch process for converting nitrogen into ammonia is urgently needed. Imitating from biological nitrogen fixation and photosynthesis processes, this work develops a monolithic artificial leaf based on triple junction (3J) InGaP/GaAs/Ge cell for solar-driven ammonia conversion under ambient conditions. A gold layer serves as the catalytic site for nitrogen fixation with photogenerated electrons. The Au/Ti/3J InGaP/GaAs/Ge photoelectrochemical (PEC) device achieves high ammonia production rates and Faradaic efficiencies in a two-electrode system without applying external potential. For example, at 0.2 sunlight intensity, the solar-to-ammonia (STA) conversion efficiency reaches 1.11% and the corresponding Faradaic efficiency is up to 28.9%. By integrating a Ni foil on the anode side for the oxygen evolution reaction (OER), the monolithic artificial leaf exhibits an ammonia production rate of 8.5 µg cm-2 h at 1.5 sunlight intensity. Additionally, a 3 × 3 cm unassisted wireless PEC device is fabricated that produces 1.0039 mg of ammonia in the 36-h durability test. Thus, the new artificial leaf can successfully and directly convert solar energy into chemical energy and generate useful products in an environmentally friendly approach.
Original language | English (US) |
---|---|
Pages (from-to) | 2205808 |
Journal | Advanced Science |
DOIs | |
State | Published - Mar 22 2023 |