TY - JOUR
T1 - Assessing the potential of solubility trapping in unconfined aquifers for subsurface carbon storage.
AU - Addassi, Mouadh
AU - Omar, Abdirizak
AU - Hoteit, Hussein
AU - Alafifi, Abdulkader Musa
AU - Arkadakskiy, Serguey
AU - Ahmed, Zeyad T
AU - Kunnummal, Noushad
AU - Gislason, Sigurdur R
AU - Oelkers, Eric H
N1 - KAUST Repository Item: Exported on 2022-12-01
Acknowledgements: The authors thank King Abdullah University of Science and Technology (KAUST) for supporting this work. Thanks to LBNL and CMG Ltd. For providing the simulators TOUGHREACT and GEM, respectively.
PY - 2022/11/28
Y1 - 2022/11/28
N2 - Carbon capture and storage projects need to be greatly accelerated to attenuate the rate and degree of global warming. Due to the large volume of carbon that will need to be stored, it is likely that the bulk of this storage will be in the subsurface via geologic storage. To be effective, subsurface carbon storage needs to limit the potential for CO2 leakage from the reservoir to a minimum. Water-dissolved CO2 injection can aid in this goal. Water-dissolved CO2 tends to be denser than CO2-free water, and its injection leads immediate solubility storage in the subsurface. To assess the feasibility and limits of water-dissolved CO2 injection coupled to subsurface solubility storage, a suite of geochemical modeling calculations based on the TOUGHREACT computer code were performed. The modelled system used in the calculations assumed the injection of 100,000 metric tons of water-dissolved CO2 annually for 100 years into a hydrostatically pressured unreactive porous rock, located at 800 to 2000 m below the surface without the presence of a caprock. This system is representative of an unconfined sedimentary aquifer. Most calculated scenarios suggest that the injection of CO2 charged water leads to the secure storage of injected CO2 so long as the water to CO2 ratio is no less than ~ 24 to 1. The identified exception is when the salinity of the original formation water substantially exceeds the salinity of the CO2-charged injection water. The results of this study indicate that unconfined aquifers, a generally overlooked potential carbon storage host, could provide for the subsurface storage of substantial quantities of CO2.
AB - Carbon capture and storage projects need to be greatly accelerated to attenuate the rate and degree of global warming. Due to the large volume of carbon that will need to be stored, it is likely that the bulk of this storage will be in the subsurface via geologic storage. To be effective, subsurface carbon storage needs to limit the potential for CO2 leakage from the reservoir to a minimum. Water-dissolved CO2 injection can aid in this goal. Water-dissolved CO2 tends to be denser than CO2-free water, and its injection leads immediate solubility storage in the subsurface. To assess the feasibility and limits of water-dissolved CO2 injection coupled to subsurface solubility storage, a suite of geochemical modeling calculations based on the TOUGHREACT computer code were performed. The modelled system used in the calculations assumed the injection of 100,000 metric tons of water-dissolved CO2 annually for 100 years into a hydrostatically pressured unreactive porous rock, located at 800 to 2000 m below the surface without the presence of a caprock. This system is representative of an unconfined sedimentary aquifer. Most calculated scenarios suggest that the injection of CO2 charged water leads to the secure storage of injected CO2 so long as the water to CO2 ratio is no less than ~ 24 to 1. The identified exception is when the salinity of the original formation water substantially exceeds the salinity of the CO2-charged injection water. The results of this study indicate that unconfined aquifers, a generally overlooked potential carbon storage host, could provide for the subsurface storage of substantial quantities of CO2.
UR - http://hdl.handle.net/10754/681136
UR - https://www.nature.com/articles/s41598-022-24623-6
U2 - 10.1038/s41598-022-24623-6
DO - 10.1038/s41598-022-24623-6
M3 - Article
C2 - 36443476
SN - 2045-2322
VL - 12
JO - Scientific Reports
JF - Scientific Reports
IS - 1
ER -