Asymmetric Nodal signaling in the zebrafish diencephalon positions the pineal organ

J. O. Liang, A. Etheridge, L. Hantsoo, A. L. Rubinstein, S. J. Nowak, J. C.I. Belmonte, M. E. Halpern*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

134 Scopus citations

Abstract

The vertebrate brain develops from a bilaterally symmetric neural tube but later displays profound anatomical and functional asymmetries. Despite considerable progress in deciphering mechanisms of visceral organ laterality, the genetic pathways regulating brain asymmetries are unknown. In zebrafish, genes implicated in laterality of the viscera (cyclops/nodal, antivin/lefty and pitx2) are coexpressed on the left side of the embryonic dorsal diencephalon, within a region corresponding to the presumptive epiphysis or pineal organ. Asymmetric gene expression in the brain requires an intact midline and Nodal-related factors. RNA-mediated rescue of mutants defective in Nodal signaling corrects tissue patterning at gastrulation, but fails to restore left-sided gene expression in the diencephalon. Such embryos develop into viable adults with seemingly normal brain morphology. However, the pineal organ, which typically emanates at a left-to- medial site from the dorsal diencephalic roof, becomes displaced in position. Thus, a conserved signaling pathway regulating visceral laterality also underlies an anatomical asymmetry of the zebrafish forebrain.

Original languageEnglish (US)
Pages (from-to)5101-5112
Number of pages12
JournalDevelopment
Volume127
Issue number23
StatePublished - 2000
Externally publishedYes

Keywords

  • Left-right axis
  • Nodal
  • Pineal organ
  • Zebrafish

ASJC Scopus subject areas

  • Molecular Biology
  • Developmental Biology

Fingerprint

Dive into the research topics of 'Asymmetric Nodal signaling in the zebrafish diencephalon positions the pineal organ'. Together they form a unique fingerprint.

Cite this