Abstract
Ion-exchanged sulfonated poly(aryl ether ketone), SPAEK with different counter-ions (H+, Na+ and Ag+) have been utilized as polymeric precursors to fabricate carbon membranes. The effects of the substituted metal ions in polymeric precursors on the separation properties of resultant carbon membranes were investigated. X-ray diffraction analysis reveals that the polymer chain packing is improved by the substituted metal ions. The silver doped SPAEK membrane demonstrates the smallest d-spacing due to the strong interactions between the silver ions and the polar groups within the polymeric matrix. The carbon membrane derived from Ag-SPAEK exhibits a more porous structure compared to that from ion-exchanged SPAEK membranes. The silver doping enhances the ideal gas permeability of carbonized membranes by 100 fold. On top of this, the H2/N2 selectivity increases from 100 to 220 while the CO2/CH4 selectivity jumps from 25 to 67. An interesting phenomenon was observed, which is the migration of silver nanoparticles and the subsequent accumulation in the bulk of membrane after carbonization. A possible mechanism to explain for this particle relocation is the Ostwald ripening. The special directional dispersion of metal nanoparticles in carbonaceous materials was investigated and discussed.
Original language | English (US) |
---|---|
Pages (from-to) | 408-416 |
Number of pages | 9 |
Journal | Carbon |
Volume | 48 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2010 |
Externally published | Yes |
ASJC Scopus subject areas
- General Chemistry
- General Materials Science