Abstract
Nanosecond repetitively pulsed (NRP) discharges were used to generate atmospheric pressure plasmas in air or nitrogen preheated at 1000 K. In order to understand the physico-chemical mechanisms that control the number densities of active species, in situ optical diagnostic techniques were developed. The ground state of atomic oxygen was measured by two-photon absorption laser induced fluorescence (TALIF), the density of N2(A) was measured by cavity ring down spectroscopy (CRDS) and the densities of N2(B) and N2(C) were measured by optical emission spectroscopy (OES). Temporally and spatially resolved density measurements were performed in the main operating regimes of the NRP discharge, namely the diffuse and filamentary regimes. The diagnostic techniques and associated challenges are presented and the effects of these discharges on the chemistry are discussed.
Original language | English (US) |
---|---|
Article number | 124002 |
Journal | Journal of Physics D: Applied Physics |
Volume | 43 |
Issue number | 12 |
DOIs | |
State | Published - 2010 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Acoustics and Ultrasonics
- Surfaces, Coatings and Films