TY - JOUR
T1 - Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers
AU - Hong, Bingbing
AU - Panagiotopoulos, Athanassios Z.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-C1-018-02
Acknowledgements: This publication is based on work supported by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2013/10/2
Y1 - 2013/10/2
N2 - We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide) dimethyl ether, CH3O(CH 2CH2O)nCH3 (PEO for short) is a widely applied physical solvent that forms the major organic constituent of a class of novel nanoparticle-based absorbents. Good predictions were obtained for pressure-composition-density relations for CO2 + PEO oligomers (2 ≤ n ≤ 12), using the Potoff force field for PEO [J. Chem. Phys. 136, 044514 (2012)] together with the TraPPE model for CO2 [AIChE J. 47, 1676 (2001)]. Water effects on Henrys constant of CO2 in PEO have also been investigated. Addition of modest amounts of water in PEO produces a relatively small increase in Henrys constant. Dependence of the calculated Henrys constant on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length. © 2013 Taylor & Francis.
AB - We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide) dimethyl ether, CH3O(CH 2CH2O)nCH3 (PEO for short) is a widely applied physical solvent that forms the major organic constituent of a class of novel nanoparticle-based absorbents. Good predictions were obtained for pressure-composition-density relations for CO2 + PEO oligomers (2 ≤ n ≤ 12), using the Potoff force field for PEO [J. Chem. Phys. 136, 044514 (2012)] together with the TraPPE model for CO2 [AIChE J. 47, 1676 (2001)]. Water effects on Henrys constant of CO2 in PEO have also been investigated. Addition of modest amounts of water in PEO produces a relatively small increase in Henrys constant. Dependence of the calculated Henrys constant on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length. © 2013 Taylor & Francis.
UR - http://hdl.handle.net/10754/597632
UR - https://www.tandfonline.com/doi/full/10.1080/00268976.2013.842660
UR - http://www.scopus.com/inward/record.url?scp=84901621680&partnerID=8YFLogxK
U2 - 10.1080/00268976.2013.842660
DO - 10.1080/00268976.2013.842660
M3 - Article
SN - 0026-8976
VL - 112
SP - 1540
EP - 1547
JO - Molecular Physics
JF - Molecular Physics
IS - 11
ER -