TY - JOUR
T1 - Auto-ignition of direct injection spray of light naphtha, primary reference fuels, gasoline and gasoline surrogate
AU - Wang, Libing
AU - Wu, Zengyang
AU - Ahmed, Ahfaz
AU - Badra, Jihad A.
AU - Sarathy, Mani
AU - Roberts, William L.
AU - Fang, Tiegang
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This research was supported in part by the Saudi Aramco R&D Center through the Clean Combustion Research Center of the King Abdullah University of Science and Technology under the FUELCOM program. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies.
PY - 2018/12/23
Y1 - 2018/12/23
N2 - In this work, the spray and auto-ignition characteristics of light naphtha (LN), primary reference fuels (PRF65, PRF95), Haltermann gasoline (CARB LEVIII, 10 vol% ethanol), and a gasoline surrogate were studied in an optically accessible constant volume combustion chamber. An outwardly opening hollow cone piezoelectric gasoline direct injection fuel injector was used. Five ambient temperatures from 650 to 950 K with a 75 K step were selected with a fixed ambient density of 3.5 kg/m, similar to the Spray G density defined by the engine combustion network (ECN). Fuel auto-ignition was achieved with varying ignition delays for the five investigated fuels depending on the selected experimental conditions. Results show that the auto-ignition locations are randomly distributed in the combustion chamber. Differences in ignition delay times among the five fuels are more significant when the ambient temperature is lower than 750 K. When the ambient temperature is lower than 750 K, PRF95 always has the longest ignition delay and LN has the shortest. Ignition delays of the five fuels are almost identical when the ambient temperature exceeds 750 K. Meanwhile, the five fuels have a similar spray front penetration length and spray angles before the occurrence of auto-ignition under all the investigated conditions.
AB - In this work, the spray and auto-ignition characteristics of light naphtha (LN), primary reference fuels (PRF65, PRF95), Haltermann gasoline (CARB LEVIII, 10 vol% ethanol), and a gasoline surrogate were studied in an optically accessible constant volume combustion chamber. An outwardly opening hollow cone piezoelectric gasoline direct injection fuel injector was used. Five ambient temperatures from 650 to 950 K with a 75 K step were selected with a fixed ambient density of 3.5 kg/m, similar to the Spray G density defined by the engine combustion network (ECN). Fuel auto-ignition was achieved with varying ignition delays for the five investigated fuels depending on the selected experimental conditions. Results show that the auto-ignition locations are randomly distributed in the combustion chamber. Differences in ignition delay times among the five fuels are more significant when the ambient temperature is lower than 750 K. When the ambient temperature is lower than 750 K, PRF95 always has the longest ignition delay and LN has the shortest. Ignition delays of the five fuels are almost identical when the ambient temperature exceeds 750 K. Meanwhile, the five fuels have a similar spray front penetration length and spray angles before the occurrence of auto-ignition under all the investigated conditions.
UR - http://hdl.handle.net/10754/631171
UR - https://www.sciencedirect.com/science/article/pii/S0360544218325167
UR - http://www.scopus.com/inward/record.url?scp=85059141893&partnerID=8YFLogxK
U2 - 10.1016/j.energy.2018.12.144
DO - 10.1016/j.energy.2018.12.144
M3 - Article
SN - 0360-5442
VL - 170
SP - 375
EP - 390
JO - Energy
JF - Energy
ER -