Automatically stable discontinuous Petrov-Galerkin methods for stationary transport problems: Quasi-optimal test space norm

Antti H. Niemi, Nathan Collier, Victor M. Calo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

19 Scopus citations

Abstract

We investigate the application of the discontinuous Petrov-Galerkin (DPG) finite element framework to stationary convection-diffusion problems. In particular, we demonstrate how the quasi-optimal test space norm improves the robustness of the DPG method with respect to vanishing diffusion. We numerically compare coarse-mesh accuracy of the approximation when using the quasi-optimal norm, the standard norm, and the weighted norm. Our results show that the quasi-optimal norm leads to more accurate results on three benchmark problems in two spatial dimensions. We address the problems associated to the resolution of the optimal test functions with respect to the quasi-optimal norm by studying their convergence numerically. In order to facilitate understanding of the method, we also include a detailed explanation of the methodology from the algorithmic point of view. © 2013 Elsevier Ltd. All rights reserved.
Original languageEnglish (US)
Title of host publicationComputers & Mathematics with Applications
PublisherElsevier BV
Pages2096-2113
Number of pages18
DOIs
StatePublished - Dec 2013

ASJC Scopus subject areas

  • Modeling and Simulation
  • Computational Theory and Mathematics
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'Automatically stable discontinuous Petrov-Galerkin methods for stationary transport problems: Quasi-optimal test space norm'. Together they form a unique fingerprint.

Cite this