Abstract
We report a novel flexible solar tracking system based on a photothermal-thermomechanical (PT-TM) actuator comprised of Ti3C2Tx MXene and polyvinylidene fluoride (PVDF) bilayer. The actuation function of the proposed device originates from photothermal and surface plasmon-assisted effects in MXenes, coupled with thermomechanical deformation of in-plane aligned PVDF polymer. Two types of solar tracking modes are evaluated based on the experimental deformation behavior of the PT-TM actuator. We find that the uniaxial East-West solar tracking option increases the overall energy intensity reaching the solar module by over 30%, in comparison with the optimized tilting-controlled mode. We also demonstrate the thermally driven self-oscillation of the MXene-PVDF device, which may have promising potential for optically and thermally driven soft robotics. The PT-TM actuator devices display robust mechanical strength and durability, with no noticeable degradation in their performance after more than 1000 cycles.
Original language | English (US) |
---|---|
Pages (from-to) | 105277 |
Journal | Nano Energy |
Volume | 77 |
DOIs | |
State | Published - Aug 15 2020 |