Azimuthal and radial flow patterns of 1g-Geldart B-type particles in a gas-solid vortex reactor

Arturo Gonzalez-Quiroga, Shekhar R. Kulkarni, Laurien Vandewalle, Patrice Perreault, Chitrakshi Goel, Geraldine J. Heynderickx, Kevin M. Van Geem*, Guy B. Marin

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    13 Scopus citations

    Abstract

    Processes requiring intensive interfacial momentum, mass and heat exchange between gases and particulate solids can be greatly enhanced by operating in a centrifugal field. This is realized in the Gas-Solid Vortex Reactor (GSVR) with centrifugal accelerations up to two orders of magnitude higher than the Earth's gravitational acceleration. Here, the flow patterns of two 1g-Geldart B-type particles are experimentally assessed, over the gas inlet velocity range 82–126 m s−1, in an 80 mm diameter and 15 mm height GSVR. The particles are monosized aluminum spheres of 0.5 mm diameter, and walnut shell in the sieve fraction 0.50–0.56 mm and aspect ratio 1.3 ± 0.2. Two dimensional Particle Image Velocimetry combined with Digital Image Analysis and pressure measurements revealed that periodic fluctuations in solids azimuthal and radial velocity between gas inlet slots are strongly related to the average solids azimuthal velocity and bed uniformity. Aluminum particles feature steeper changes in azimuthal velocity and more attenuated changes in radial velocity than walnut shell particles. Within the assessed gas inlet velocity range the solids bed of aluminum exhibits average azimuthal velocities and bed voidages 40–50% and ≈10% lower than those of walnut shell. The aerodynamic response time of the particles, i.e. ρsdp 2/18μg, emerged as an important parameter to assess the influence of the carrier gas jet on the radial deflection of the particles and the interaction solids bed-outer wall. Too low aerodynamic response time relates to nonuniformity in bed voidage due to solids radial velocity fluctuations. Excessive aerodynamic response time indicates low solids azimuthal velocities due to solids bed-outer wall friction.

    Original languageEnglish (US)
    Pages (from-to)410-422
    Number of pages13
    JournalPowder Technology
    Volume354
    DOIs
    StatePublished - Sep 2019

    ASJC Scopus subject areas

    • General Chemical Engineering

    Fingerprint

    Dive into the research topics of 'Azimuthal and radial flow patterns of 1g-Geldart B-type particles in a gas-solid vortex reactor'. Together they form a unique fingerprint.

    Cite this