Bacterial assemblage structure and carbon metabolism along a productivity gradient in the NE Atlantic Ocean

Laura Alonso-Sáez*, Javier Arístegui, Jarone Pinhassi, Laura Gómez-Consarnau, José M. González, Dolors Vaqué, Susana Agustí, Josep M. Gasol

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

66 Scopus citations


Bacterioplankton have the potential to significantly affect the cycling of organic matter in the ocean; however, little is known about the linkage between bacterial assemblage structure and carbon metabolism. In this study, we investigated whether changes in the phylogenetic composition of bacterioplankton were associated with changes in bacterial carbon processing (bacterial production, respiration and biomass) in the subtropical NE Atlantic Ocean. We found consistent differences in the composition of the bacterial assemblage, as revealed by denaturing gradient gel electrophoresis (DGGE) and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), along a gradient from the NW African upwelling to the oligotrophic North Atlantic Subtropical Gyre. The percent contribution of Bacteroidetes, Roseobacter and Gammaproteobacteria significantly increased towards more productive waters, whereas the SAR11 clade of the Alphaproteobacteria remained relatively constant (average 28 % of DAPI-stained cells) throughout the area. Changes in the composition of the bacterial assemblage detected by DGGE were weakly but significantly correlated with changes in carbon processing variables. The abundances of Roseobacter and Gammaproteobacteria were highly correlated with the concentration of particulate organic carbon and chlorophyll a, reflecting the affinity of these groups to nutrient-enriched conditions. The abundance of Roseobacter was also positively correlated with heterotrophic bacterial production, suggesting their active participation in carbon processing.

Original languageEnglish (US)
Pages (from-to)43-53
Number of pages11
JournalAquatic Microbial Ecology
Issue number1
StatePublished - Jan 19 2007
Externally publishedYes


  • Atlantic Ocean
  • Bacteria
  • DGGE
  • Diversity
  • Metabolism

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Aquatic Science


Dive into the research topics of 'Bacterial assemblage structure and carbon metabolism along a productivity gradient in the NE Atlantic Ocean'. Together they form a unique fingerprint.

Cite this