TY - GEN
T1 - Bandit online learning on graphs via adaptive optimization
AU - Yang, Peng
AU - Zhao, Peilin
AU - Gao, Xin
N1 - Publisher Copyright:
© 2018 International Joint Conferences on Artificial Intelligence. All right reserved.
PY - 2018
Y1 - 2018
N2 - Traditional online learning on graphs adapts graph Laplacian into ridge regression, which may not guarantee reasonable accuracy when the data are adversarially generated. To solve this issue, we exploit an adaptive optimization framework for online classification on graphs. The derived model can achieve a min-max regret under an adversarial mechanism of data generation. To take advantage of the informative labels, we propose an adaptive large-margin update rule, which enjoys a lower regret than the algorithms using error-driven update rules. However, this algorithm assumes that the full information label is provided for each node, which is violated in many practical applications where labeling is expensive and the oracle may only tell whether the prediction is correct or not. To address this issue, we propose a bandit online algorithm on graphs. It derives per-instance confidence region of the prediction, from which the model can be learned adaptively to minimize the online regret. Experiments on benchmark graph datasets show that the proposed bandit algorithm outperforms state-of-the-art competitors, even sometimes beats the algorithms using full information label feedback.
AB - Traditional online learning on graphs adapts graph Laplacian into ridge regression, which may not guarantee reasonable accuracy when the data are adversarially generated. To solve this issue, we exploit an adaptive optimization framework for online classification on graphs. The derived model can achieve a min-max regret under an adversarial mechanism of data generation. To take advantage of the informative labels, we propose an adaptive large-margin update rule, which enjoys a lower regret than the algorithms using error-driven update rules. However, this algorithm assumes that the full information label is provided for each node, which is violated in many practical applications where labeling is expensive and the oracle may only tell whether the prediction is correct or not. To address this issue, we propose a bandit online algorithm on graphs. It derives per-instance confidence region of the prediction, from which the model can be learned adaptively to minimize the online regret. Experiments on benchmark graph datasets show that the proposed bandit algorithm outperforms state-of-the-art competitors, even sometimes beats the algorithms using full information label feedback.
UR - http://www.scopus.com/inward/record.url?scp=85055712486&partnerID=8YFLogxK
U2 - 10.24963/ijcai.2018/415
DO - 10.24963/ijcai.2018/415
M3 - Conference contribution
AN - SCOPUS:85055712486
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 2991
EP - 2997
BT - Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
A2 - Lang, Jerome
PB - International Joint Conferences on Artificial Intelligence
T2 - 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
Y2 - 13 July 2018 through 19 July 2018
ER -