Bayesian estimation of two-part joint models for a longitudinal semicontinuous biomarker and a terminal event with INLA: Interests for cancer clinical trial evaluation

Denis Rustand*, Janet van Niekerk, Håvard Rue, Christophe Tournigand, Virginie Rondeau, Laurent Briollais

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Two-part joint models for a longitudinal semicontinuous biomarker and a terminal event have been recently introduced based on frequentist estimation. The biomarker distribution is decomposed into a probability of positive value and the expected value among positive values. Shared random effects can represent the association structure between the biomarker and the terminal event. The computational burden increases compared to standard joint models with a single regression model for the biomarker. In this context, the frequentist estimation implemented in the R package frailtypack can be challenging for complex models (i.e., a large number of parameters and dimension of the random effects). As an alternative, we propose a Bayesian estimation of two-part joint models based on the Integrated Nested Laplace Approximation (INLA) algorithm to alleviate the computational burden and fit more complex models. Our simulation studies confirm that INLA provides accurate approximation of posterior estimates and to reduced computation time and variability of estimates compared to frailtypack in the situations considered. We contrast the Bayesian and frequentist approaches in the analysis of two randomized cancer clinical trials (GERCOR and PRIME studies), where INLA has a reduced variability for the association between the biomarker and the risk of event. Moreover, the Bayesian approach was able to characterize subgroups of patients associated with different responses to treatment in the PRIME study. Our study suggests that the Bayesian approach using the INLA algorithm enables to fit complex joint models that might be of interest in a wide range of clinical applications.

Original languageEnglish (US)
Article number2100322
JournalBiometrical Journal
Volume65
Issue number4
DOIs
StatePublished - Apr 2023

Keywords

  • Bayesian estimation
  • computational efficiency
  • INLA
  • solid tumors cancer
  • two-part joint model

ASJC Scopus subject areas

  • Statistics and Probability
  • Statistics, Probability and Uncertainty

Fingerprint

Dive into the research topics of 'Bayesian estimation of two-part joint models for a longitudinal semicontinuous biomarker and a terminal event with INLA: Interests for cancer clinical trial evaluation'. Together they form a unique fingerprint.

Cite this