TY - GEN
T1 - Bayesian inference for gaussian process classifiers with annealing and pseudo-marginal MCMC
AU - Filippone, Maurizio
N1 - Publisher Copyright:
© 2014 IEEE.
PY - 2014/12/4
Y1 - 2014/12/4
N2 - Kernel methods have revolutionized the fields of pattern recognition and machine learning. Their success, however, critically depends on the choice of kernel parameters. Using Gaussian process (GP) classification as a working example, this paper focuses on Bayesian inference of covariance (kernel) parameters using Markov chain Monte Carlo (MCMC) methods. The motivation is that, compared to standard optimization of kernel parameters, they have been systematically demonstrated to be superior in quantifying uncertainty in predictions. Recently, the Pseudo-Marginal MCMC approach has been proposed as a practical inference tool for GP models. In particular, it amounts in replacing the analytically intractable marginal likelihood by an unbiased estimate obtainable by approximate methods and importance sampling. After discussing the potential drawbacks in employing importance sampling, this paper proposes the application of annealed importance sampling. The results empirically demonstrate that compared to importance sampling, annealed importance sampling can reduce the variance of the estimate of the marginal likelihood exponentially in the number of data at a computational cost that scales only polynomially. The results on real data demonstrate that employing annealed importance sampling in the Pseudo-Marginal MCMC approach represents a step forward in the development of fully automated exact inference engines for GP models.
AB - Kernel methods have revolutionized the fields of pattern recognition and machine learning. Their success, however, critically depends on the choice of kernel parameters. Using Gaussian process (GP) classification as a working example, this paper focuses on Bayesian inference of covariance (kernel) parameters using Markov chain Monte Carlo (MCMC) methods. The motivation is that, compared to standard optimization of kernel parameters, they have been systematically demonstrated to be superior in quantifying uncertainty in predictions. Recently, the Pseudo-Marginal MCMC approach has been proposed as a practical inference tool for GP models. In particular, it amounts in replacing the analytically intractable marginal likelihood by an unbiased estimate obtainable by approximate methods and importance sampling. After discussing the potential drawbacks in employing importance sampling, this paper proposes the application of annealed importance sampling. The results empirically demonstrate that compared to importance sampling, annealed importance sampling can reduce the variance of the estimate of the marginal likelihood exponentially in the number of data at a computational cost that scales only polynomially. The results on real data demonstrate that employing annealed importance sampling in the Pseudo-Marginal MCMC approach represents a step forward in the development of fully automated exact inference engines for GP models.
UR - http://www.scopus.com/inward/record.url?scp=84919941197&partnerID=8YFLogxK
U2 - 10.1109/ICPR.2014.116
DO - 10.1109/ICPR.2014.116
M3 - Conference contribution
AN - SCOPUS:84919941197
T3 - Proceedings - International Conference on Pattern Recognition
SP - 614
EP - 619
BT - Proceedings - International Conference on Pattern Recognition
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 22nd International Conference on Pattern Recognition, ICPR 2014
Y2 - 24 August 2014 through 28 August 2014
ER -