Beamforming and Band Allocation for Satellite and High-Altitude Platforms Cognitive Systems

Dong-Hyoun Na, Kihong Park, Young-Chai Ko, Mohamed-Slim Alouini

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

In this letter, we consider a cognitive radio network consisting of broadcast satellite service (BSS), high-density fixed-satellite service (HDFSS), and high-altitude platforms (HAPs) systems. The spectrum utilization within a satellite beam coverage is increased by deploying extra HAPs in the pre-determined hot-spot regions to existing cognitive systems in which the BSS and HDFSS share frequency bands. Since the multiple network nodes simultaneously employ the same frequency band, there exists a challenge to efficiently mitigate the interference between them. Therefore, we propose an iterative precoding and band allocation algorithm for multi-antenna HAPs to maximize the network data rate. In addition, we present other low-complexity techniques and compare them through simulation results.
Original languageEnglish (US)
Pages (from-to)1-1
Number of pages1
JournalIEEE Wireless Communications Letters
DOIs
StatePublished - Aug 29 2022

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Beamforming and Band Allocation for Satellite and High-Altitude Platforms Cognitive Systems'. Together they form a unique fingerprint.

Cite this