TY - JOUR
T1 - Benzimidazole linked polymers (BILPs) in mixed-matrix membranes
T2 - Influence of filler porosity on the CO2/N2 separation performance
AU - Shan, Meixia
AU - Seoane, Beatriz
AU - Pustovarenko, Alexey
AU - Wang, Xuerui
AU - Liu, Xinlei
AU - Yarulina, Irina
AU - Abou-Hamad, Edy
AU - Kapteijn, Freek
AU - Gascon, Jorge
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/11/15
Y1 - 2018/11/15
N2 - The performance of mixed-matrix membranes (MMMs) based on Matrimid® and benzimidazole-linked polymers (BILPs) have been investigated for the separation CO2/N2 and the dependency on the filler porosity. BILPs with two different porosities (BILP-101 and RT-BILP-101) were synthesized through controlling the initial polymerization rate and further characterized by several techniques (DRIFTs, 13C CP/MAS NMR, SEM, TEM, N2 and CO2 adsorption). To investigate the influence of porosity, the two types of fillers were incorporated into Matrimid® to prepare MMMs at varied loadings (8, 16 and 24 wt%). SEM confirmed that both BILP-101 and RT-BILP-101 are well dispered, indicating their good compatibility with the polymeric matrix. The partial pore blockage in the membrane was verified by CO2 adsorption isotherms on the prepared membranes. In the separation of CO2 from a 15:85 CO2:N2 mixture at 308 K, the incorporation of both BILPs fillers resulted in an enhancement in gas permeability together with constant selectivity owing to the fast transport pathways introduced by the porous network. It was noteworthy that the initial porosity of the filler had a large impact in separation permeability. The best improvement was achieved by 24 wt% RT-BILP-101 MMMs, for which the CO2 permeability increases up to 2.8-fold (from 9.6 to 27 Barrer) compared to the bare Matrimid®.
AB - The performance of mixed-matrix membranes (MMMs) based on Matrimid® and benzimidazole-linked polymers (BILPs) have been investigated for the separation CO2/N2 and the dependency on the filler porosity. BILPs with two different porosities (BILP-101 and RT-BILP-101) were synthesized through controlling the initial polymerization rate and further characterized by several techniques (DRIFTs, 13C CP/MAS NMR, SEM, TEM, N2 and CO2 adsorption). To investigate the influence of porosity, the two types of fillers were incorporated into Matrimid® to prepare MMMs at varied loadings (8, 16 and 24 wt%). SEM confirmed that both BILP-101 and RT-BILP-101 are well dispered, indicating their good compatibility with the polymeric matrix. The partial pore blockage in the membrane was verified by CO2 adsorption isotherms on the prepared membranes. In the separation of CO2 from a 15:85 CO2:N2 mixture at 308 K, the incorporation of both BILPs fillers resulted in an enhancement in gas permeability together with constant selectivity owing to the fast transport pathways introduced by the porous network. It was noteworthy that the initial porosity of the filler had a large impact in separation permeability. The best improvement was achieved by 24 wt% RT-BILP-101 MMMs, for which the CO2 permeability increases up to 2.8-fold (from 9.6 to 27 Barrer) compared to the bare Matrimid®.
KW - Benzimidazole-linked polymers
KW - CO separation
KW - Mixed-matrix membranes
UR - http://www.scopus.com/inward/record.url?scp=85052985384&partnerID=8YFLogxK
U2 - 10.1016/j.memsci.2018.08.023
DO - 10.1016/j.memsci.2018.08.023
M3 - Article
AN - SCOPUS:85052985384
SN - 0376-7388
VL - 566
SP - 213
EP - 222
JO - Journal of Membrane Science
JF - Journal of Membrane Science
ER -