Abstract
We introduce a spatially explicit model that evaluates how the trade-offs between the life strategies of two interacting plant species affect the outcome of their interaction along environmental severity gradients. In our model, we represent the landscape as a two-dimensional lattice, with environmental severity increasing from left to right. Two species with different strategies, a competitor and a stress-tolerant, interact in the lattice. We find that facilitation expands the realized niche of the competitor into harsh environments by suppressing the stress-tolerant species. Most of their coexisting range is dominated by a positive effect of one species on another, with a reciprocal negative effect from the species receiving the benefits on its benefactor ("+, -"), whereas mutualistic ("+, +") interactions are only found in the harshest part of the environmental gradient. Contrarily as assumed by models commonly used in facilitation research (e.g. dual-lattice models), our results indicate that "+, +" interactions are not dominant, and that their differences with "+, -" interactions along environmental severity gradients depend on the strategies of the interacting species. By integrating the trade-off between competitive ability and stress tolerance, our model provides a new framework to investigate the interplay of facilitative and competitive interactions along environmental gradients and their impacts on processes such as population dynamics and community organization.
Original language | English (US) |
---|---|
Pages (from-to) | 266-273 |
Number of pages | 8 |
Journal | Journal of theoretical biology |
Volume | 258 |
Issue number | 2 |
DOIs | |
State | Published - May 21 2009 |
Keywords
- Mutualism
- Niche
- Spatially explicit model
- Strategy
- Trade-off
ASJC Scopus subject areas
- Statistics and Probability
- Modeling and Simulation
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology
- General Agricultural and Biological Sciences
- Applied Mathematics