TY - JOUR
T1 - Biocidal Activity of Plasma Modified Electrospun Polysulfone Mats Functionalized with Polyethyleneimine-Capped Silver Nanoparticles
AU - Schiffman, Jessica D.
AU - Wang, Yue
AU - Giannelis, Emmanuel P.
AU - Elimelech, Menachem
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-C1-018-02
Acknowledgements: This publication was based on work supported by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). We acknowledge use of facilities at the Cornell NanoScale Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS-0335765).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2011/11
Y1 - 2011/11
N2 - The incorporation of silver nanoparticles (AgNPs) into polymeric nanofibers has attracted a great deal of attention due to the strong antimicrobial activity that the resulting fibers exhibit. However, bactericidal efficacy of AgNP-coated electrospun fibrous mats has not yet been demonstrated. In this study, polysulfone (PSf) fibers were electrospun and surface-modified using an oxygen plasma treatment, which allowed for facile irreversible deposition of cationically charged polyethyleneimine (PEI)-AgNPs via electrostatic interactions. The PSf-AgNP mats were characterized for relative silver concentration as a function of plasma treatment time using ICP-MS and changes in contact angle. Plasma treatment of 60 s was the shortest time required for maximum loss of bacteria (Escherichia coli) viability. Time-dependent bacterial cytotoxicity studies indicate that the optimized PSf-AgNP mats exhibit a high level of inactivation against both Gram negative bacteria, Escherichia coli, and Gram positive bacteria, Bacillus anthracis and Staphylococcus aureus. © 2011 American Chemical Society.
AB - The incorporation of silver nanoparticles (AgNPs) into polymeric nanofibers has attracted a great deal of attention due to the strong antimicrobial activity that the resulting fibers exhibit. However, bactericidal efficacy of AgNP-coated electrospun fibrous mats has not yet been demonstrated. In this study, polysulfone (PSf) fibers were electrospun and surface-modified using an oxygen plasma treatment, which allowed for facile irreversible deposition of cationically charged polyethyleneimine (PEI)-AgNPs via electrostatic interactions. The PSf-AgNP mats were characterized for relative silver concentration as a function of plasma treatment time using ICP-MS and changes in contact angle. Plasma treatment of 60 s was the shortest time required for maximum loss of bacteria (Escherichia coli) viability. Time-dependent bacterial cytotoxicity studies indicate that the optimized PSf-AgNP mats exhibit a high level of inactivation against both Gram negative bacteria, Escherichia coli, and Gram positive bacteria, Bacillus anthracis and Staphylococcus aureus. © 2011 American Chemical Society.
UR - http://hdl.handle.net/10754/597672
UR - https://pubs.acs.org/doi/10.1021/la202605z
UR - http://www.scopus.com/inward/record.url?scp=80054922135&partnerID=8YFLogxK
U2 - 10.1021/la202605z
DO - 10.1021/la202605z
M3 - Article
C2 - 21928790
SN - 0743-7463
VL - 27
SP - 13159
EP - 13164
JO - Langmuir
JF - Langmuir
IS - 21
ER -