Abstract
A biodegradable positron-emitting dendritic nanoprobe targeted at αvβ3 integrin, a biological marker known to modulate angiogenesis, was developed for the noninvasive imaging of angiogenesis. The nanoprobe has a modular multivalent core-shell architecture consisting of a biodegradable heterobifunctional dendritic core chemoselectively functionalized with heterobifunctional polyethylene oxide (PEO) chains that form a protective shell, which imparts biological stealth and dictates the pharmacokinetics. Each of the 8 branches of the dendritic core was functionalized for labeling with radiohalogens. Placement of radioactive moieties at the core was designed to prevent in vivo dehalogenation, a potential problem for radiohalogens in imaging and therapy. Targeting peptides of cyclic arginine-glycine-aspartic acid (RGD) motifs were installed at the terminal ends of the PEO chains to enhance their accessibility to αvβ 3 integrin receptors. This nanoscale design enabled a 50-fold enhancement of the binding affinity to αvβ3 integrin receptors with respect to the monovalent RGD peptide alone, from 10.40 nM to 0.18 nM IC50. Cell-based assays of the 125I-labeled dendritic nanoprobes using αvβ3-positive cells showed a 6-fold increase in αvβ3 receptor-mediated endocytosis of the targeted nanoprobe compared with the nontargeted nanoprobe, whereas αvβ3-negative cells showed no enhancement of cell uptake over time. In vivo biodistribution studies of 76Br-labeled dendritic nanoprobes showed excellent bioavailability for the targeted and nontargeted nanoprobes. In vivo studies in a murine hindlimb ischemia model for angiogenesis revealed high specific accumulation of 76Br-labeled dendritic nanoprobes targeted at αvβ3 integrins in angiogenic muscles, allowing highly selective imaging of this critically important process.
Original language | English (US) |
---|---|
Pages (from-to) | 685-690 |
Number of pages | 6 |
Journal | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA |
Volume | 106 |
Issue number | 3 |
DOIs | |
State | Published - Jan 20 2009 |
Externally published | Yes |
Keywords
- Dendrimer
- Molecular imaging
ASJC Scopus subject areas
- General