Bioengineered ‘golden’ indica rice cultivars with β-carotene metabolism in the endosperm with hygromycin and mannose selection systems

Karabi Datta, Niranjan Baisakh, Norman Oliva, Lina Torrizo, Editha Abrigo, Jing Tan, Mayank Rai, Sayda Rehana, Salim Al-Babili, Peter Beyer, Ingo Potrykus, Swapan K. Datta*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

150 Scopus citations

Abstract

Vitamin-A deficiency (VAD) is a major malnutrition problem in South Asia, where indica rice is the staple food. Indica-type rice varieties feed more than 2 billion people. Hence, we introduced a combination of transgenes using the biolistic system of transformation enabling biosynthesis of provitamin A in the endosperm of several indica rice cultivars adapted to diverse ecosystems of different countries. The rice seed-specific glutelin promoter (Gt-1 P) was used to drive the expression of phytoene synthase (psy), while lycopene β-cyclase (lcy) and phytoene desaturase (crtI), fused to the transit peptide sequence of the pea-Rubisco small subunit, were driven by the constitutive cauliflower mosaic virus promoter (CaMV35S P). Transgenic plants were recovered through selection with either CaMV35S P driven hph (hygromycin phosphotransferase) gene or cestrum yellow leaf curling virus promoter (CMP) driven pmi (phophomannose isomerase) gene. Molecular and biochemical analyses demonstrated stable integration and expression of the transgenes. The yellow colour of the polished rice grain evidenced the carotenoid accumulation in the endosperm. The colour intensity correlated with the estimated carotenoid content by spectrophotometric and HPLC analysis. Carotenoid level in cooked polished seeds was comparable (with minor loss of xanthophylls) to that in non-cooked seeds of the same transgenic line. The variable segregation pattern in T1 selfing generation indicated single to multiple loci insertion of the transgenes in the genome. This is the first report of using nonantibiotic pmi driven by a novel promoter in generating transgenic indica rice for possible future use in human nutrition.

Original languageEnglish (US)
Pages (from-to)81-90
Number of pages10
JournalPlant biotechnology journal
Volume1
Issue number2
DOIs
StatePublished - Mar 2003

Keywords

  • biolistic transformation
  • cestrum promoter
  • golden indica rice
  • phosphomannose isomerase
  • provitamin A
  • β-carotene

ASJC Scopus subject areas

  • Biotechnology
  • Agronomy and Crop Science
  • Plant Science

Fingerprint

Dive into the research topics of 'Bioengineered ‘golden’ indica rice cultivars with β-carotene metabolism in the endosperm with hygromycin and mannose selection systems'. Together they form a unique fingerprint.

Cite this