Biofilm development and the dynamics of preferential flow paths in porous media

Simona Bottero, Tomas Storck, Timo J. Heimovaara, Mark C.M. van Loosdrecht, Michael V. Enzien, Cristian Picioreanu

Research output: Contribution to journalArticlepeer-review

57 Scopus citations


A two-dimensional pore-scale numerical model was developed to evaluate the dynamics of preferential flow paths in porous media caused by bioclogging. The liquid flow and solute transport through the pore network were coupled with a biofilm model including biomass attachment, growth, decay, lysis, and detachment. Blocking of all but one flow path was obtained under constant liquid inlet flow rate and biomass detachment caused by shear forces only. The stable flow path formed when biofilm detachment balances growth, even with biomass weakened by decay. However, shear forces combined with biomass lysis upon starvation could produce an intermittently shifting location of flow channels. Dynamic flow pathways may also occur when combined liquid shear and pressure forces act on the biofilm. In spite of repeated clogging and unclogging of interconnected pore spaces, the average permeability reached a quasi-constant value. Oscillations in the medium permeability were more pronounced for weaker biofilms. © 2013 Taylor & Francis.
Original languageEnglish (US)
Pages (from-to)1069-1086
Number of pages18
Issue number9
StatePublished - Oct 1 2013
Externally publishedYes

ASJC Scopus subject areas

  • Applied Microbiology and Biotechnology
  • Water Science and Technology
  • Aquatic Science


Dive into the research topics of 'Biofilm development and the dynamics of preferential flow paths in porous media'. Together they form a unique fingerprint.

Cite this