Biologically plausible speech recognition with LSTM neural nets

Alex Graves, Douglas Eck, Nicole Beringer, Juergen Schmidhuber

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

Long Short-Term Memory (LSTM) recurrent neural networks (RNNs) are local in space and time and closely related to a biological model of memory in the prefrontal cortex. Not only are they more biologically plausible than previous artificial RNNs, they also outperformed them on many artificially generated sequential processing tasks. This encouraged us to apply LSTM to more realistic problems, such as the recognition of spoken digits. Without any modification of the underlying algorithm, we achieved results comparable to state-of-the-art Hidden Markov Model (HMM) based recognisers on both the TIDIGITS and TI46 speech corpora. We conclude that LSTM should be further investigated as a biologically plausible basis for a bottom-up, neural net-based approach to speech recognition. © Springer-Verlag 2004.
Original languageEnglish (US)
Pages (from-to)127-136
Number of pages10
JournalLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume3141
DOIs
StatePublished - Jan 1 2004
Externally publishedYes

Fingerprint

Dive into the research topics of 'Biologically plausible speech recognition with LSTM neural nets'. Together they form a unique fingerprint.

Cite this