TY - JOUR
T1 - Boron-Catalyzed C1 Copolymerization of Arsonium and Sulfoxonium Ylides toward Unrepresented Structures and Fluorescence Properties
AU - Zhou, Mingtao
AU - Hadjichristidis, Nikos
N1 - Publisher Copyright:
© 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
PY - 2024/7/1
Y1 - 2024/7/1
N2 - The first synthesis of well-defined poly(methylene-co-1,1-diphenylpropenenylene) (C1-co-C1’), equivalent to poly(ethylene-co-diphenylbutadiene) copolymers was accomplished by C1 copolymerization of novel diphenylpropenyl triphenyl arsonium ylides (Ph2AY) and dimethylsulfoxonium methylide (Me2SY) using B-thexylborepane as initiator. All polymerization conditions, including feed ratio, temperature, and reaction time, were optimized. A series of photoluminescent poly(ethylene-co-diphenylbutadiene)s were synthesized at different feed ratios, opening a new synthetic horizon for poly(ethylene-co-disubstitutedbutadiene) copolymers. Notably, a new C1 segment, arising from a double bond rearrangement, was confirmed by NMR, resulting in an unprecedented two-monomer three-structure random terpolymer. An unexpected red-shift phenomenon in the fluorescence spectra was observed with increasing the ratio of Ph2AY in the copolymer. This shift is attributed to the aggregation of diphenylbutadiene segment, similar to through-space conjugation (TSC), likely induced by a decrease in the crystallinity of copolymers. Furthermore, another disubstituted allylic triphenyl arsonium ylides, (E)-2-phenylbutenyl triphenyl arsonium ylide (MePhAY) was also synthesized and investigated. These additional compounds expand the knowledge and the potential applications of such copolymerization techniques in advanced materials.
AB - The first synthesis of well-defined poly(methylene-co-1,1-diphenylpropenenylene) (C1-co-C1’), equivalent to poly(ethylene-co-diphenylbutadiene) copolymers was accomplished by C1 copolymerization of novel diphenylpropenyl triphenyl arsonium ylides (Ph2AY) and dimethylsulfoxonium methylide (Me2SY) using B-thexylborepane as initiator. All polymerization conditions, including feed ratio, temperature, and reaction time, were optimized. A series of photoluminescent poly(ethylene-co-diphenylbutadiene)s were synthesized at different feed ratios, opening a new synthetic horizon for poly(ethylene-co-disubstitutedbutadiene) copolymers. Notably, a new C1 segment, arising from a double bond rearrangement, was confirmed by NMR, resulting in an unprecedented two-monomer three-structure random terpolymer. An unexpected red-shift phenomenon in the fluorescence spectra was observed with increasing the ratio of Ph2AY in the copolymer. This shift is attributed to the aggregation of diphenylbutadiene segment, similar to through-space conjugation (TSC), likely induced by a decrease in the crystallinity of copolymers. Furthermore, another disubstituted allylic triphenyl arsonium ylides, (E)-2-phenylbutenyl triphenyl arsonium ylide (MePhAY) was also synthesized and investigated. These additional compounds expand the knowledge and the potential applications of such copolymerization techniques in advanced materials.
KW - arsonium ylides
KW - C1-copolymerization
KW - photoluminescence
KW - poly(ethylene-co-diphenylbutadiene)s
KW - sulfoxonium methylide
UR - http://www.scopus.com/inward/record.url?scp=85194919096&partnerID=8YFLogxK
U2 - 10.1002/anie.202403527
DO - 10.1002/anie.202403527
M3 - Article
C2 - 38648110
AN - SCOPUS:85194919096
SN - 1433-7851
VL - 63
JO - Angewandte Chemie - International Edition
JF - Angewandte Chemie - International Edition
IS - 27
M1 - e202403527
ER -