Abstract
Extraction of boron from aqueous solutions using selective resins is important in a variety of applications including desalination, ultrapure water production, and nuclear power generation. Today's commercial boron-selective resins are exclusively prepared by functionalization of styrene-divinylbenzene (STY-DVB) beads with N-methylglucamine to produce resins with boron-chelating groups. However, such boron-selective resins have a limited binding capacity with a maximum free base content of 0.7 eq/L, which corresponds to a sorption capacity of 1.16 ± 0.03 mMol/g in aqueous solutions with equilibrium boron concentration of ∼70 mM. In this article, we describe the synthesis and characterization of a new resin that can selectively extract boron from aqueous solutions. We show that branched polyethylenimine (PEI) beads obtained from an inverse suspension process can be reacted with glucono-1,5-d-lactone to afford a resin consisting of spherical beads with high density of boron-chelating groups. This resin has a sorption capacity of 1.93 ± 0.04 mMol/g in aqueous solution with equilibrium boron concentration of ∼70 mM, which is 66% percent larger than that of standard commercial STY-DVB resins. Our new boron-selective resin also shows excellent regeneration efficiency using a standard acid wash with a 1.0 M HCl solution followed by neutralization with a 0.1 M NaOH solution.
Original language | English (US) |
---|---|
Pages (from-to) | 8998-9004 |
Number of pages | 7 |
Journal | Environmental Science and Technology |
Volume | 46 |
Issue number | 16 |
DOIs | |
State | Published - Aug 21 2012 |
Externally published | Yes |
ASJC Scopus subject areas
- General Chemistry
- Environmental Chemistry