TY - JOUR
T1 - Brief Timelapse on Dendrimer Chemistry: Advances, Limitations, and Expectations
AU - Ornelas, Catia
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The author is verygrateful to her former supervisors andmentors, namely, Prof. João Rodriguesfrom University of Madeira, Prof. DidierAstruc, and Dr. Jaime Ruiz Aranzaesfrom University of Bordeaux, Prof.Marcus Weck from New York University,Prof. Jean M. J. Fréchet from Universityof California Berkeley (currently atKAUST), Prof. Ana Moore, Prof. ThomasMoore, and Prof. Devens Gust fromArizona State University. Financialsupport has been provided by Sao PauloResearch Foundation (FAPESP, Grant No.2013/11519–7) and National Council forScientific and Technological Development(CNPq, grant No. 445556/2014-5). Prof.Jackson D. Megiatto Jr. is gratefullyacknowledged for his input on thisarticle.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2015/12/9
Y1 - 2015/12/9
N2 - © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Dendrimers are well-defined branched macromolecules that have been studied for a wide variety of applications. Possibility to add multiple functionalities in precise locations of the dendritic structure generated great expectations for the application of dendrimers in nanomedicine, however, the number of dendrimer-based formulations that advance to clinical studies has been somewhat deceiving. This is partially due to the nonreproducible pharmokinetic behavior observed for multifunctional dendrimers synthesized through the random-statistical approach that leads to mixtures of products. Therefore, it is crucial to develop multifunctional dendrimers with well-defined structures in order to increase the chances of meeting the clinical expectations placed on dendrimers. This talent article will give an overview of the dendrimer field, discussing the application of dendrimers in nanomedicine, light-harvesting systems, sensing and catalysis, with a critical analysis on the expectations, limitations, advances, current challenges and future directions. Dendrimer timelapse demonstrates constant evolution in dendrimer chemistry enabling their application in nanomedicine, protein mimic, catalysis, light harvesting systems, and sensing. Increasing the variety of functionalities in dendrimers located at precise sites of the dendritic backbone result in versatile multifunctional nanomaterials that in the future might approach the conceptual nanobots.
AB - © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Dendrimers are well-defined branched macromolecules that have been studied for a wide variety of applications. Possibility to add multiple functionalities in precise locations of the dendritic structure generated great expectations for the application of dendrimers in nanomedicine, however, the number of dendrimer-based formulations that advance to clinical studies has been somewhat deceiving. This is partially due to the nonreproducible pharmokinetic behavior observed for multifunctional dendrimers synthesized through the random-statistical approach that leads to mixtures of products. Therefore, it is crucial to develop multifunctional dendrimers with well-defined structures in order to increase the chances of meeting the clinical expectations placed on dendrimers. This talent article will give an overview of the dendrimer field, discussing the application of dendrimers in nanomedicine, light-harvesting systems, sensing and catalysis, with a critical analysis on the expectations, limitations, advances, current challenges and future directions. Dendrimer timelapse demonstrates constant evolution in dendrimer chemistry enabling their application in nanomedicine, protein mimic, catalysis, light harvesting systems, and sensing. Increasing the variety of functionalities in dendrimers located at precise sites of the dendritic backbone result in versatile multifunctional nanomaterials that in the future might approach the conceptual nanobots.
UR - http://hdl.handle.net/10754/597695
UR - http://doi.wiley.com/10.1002/macp.201500393
UR - http://www.scopus.com/inward/record.url?scp=84955194827&partnerID=8YFLogxK
U2 - 10.1002/macp.201500393
DO - 10.1002/macp.201500393
M3 - Article
SN - 1022-1352
VL - 217
SP - 149
EP - 174
JO - Macromolecular Chemistry and Physics
JF - Macromolecular Chemistry and Physics
IS - 2
ER -