TY - JOUR
T1 - Broadband single-cell-driven multifunctional metalensing
AU - Mahmood, Nasir
AU - Mehmood, Muhammad Qasim
AU - Zubair, Muhammad
AU - Massoud, Yehia
N1 - Publisher Copyright:
© 2023 Optica Publishing Group.
PY - 2023/3/1
Y1 - 2023/3/1
N2 - Metasurfaces are artificially engineered ultrathin photonic components that can be freely designed to exhibit unprecedented capabilities of highly-efficient electromagnetic wave manipulation. The ever-growing demand for miniaturized photonic devices for emerging applications, like imaging, spectroscopy, biosensing, and quantum information processing, consistently requires broadband multifunctional and highly-efficient meta-devices. Recent years have witnessed tremendous advancements in metasurfaces; however, investigating the novel platform to realize broadband metasurfaces that integrate multiple functionalities in a singlelayered structure would be an obvious technological extension. Here, we present a broadband single-cell-driven multifunctional metasurface platform capable of manipulating electromagnetic waves over a wide range of visible wavelengths (475-650 nm). A lossless zinc sulfide material exhibiting a sufficiently large refractive index and negligible extension coefficient across the visible spectrum is exploited to demonstrate the state-of-the-art meta-devices. Furthermore, a well-known spin-decoupling technique is implemented to multiplex different optical phenomena into a single-cell-driven structure. For proof of the concept, we demonstrate two meta-devices that provide transverse and longitudinal splitting of different optical phenomena for the visible wavelengths. The presented zinc sulfide material and unique design philosophy to achieve broadband multifunctional meta-devices may find potential applications in polarization and dispersion analyzers, sensing, optical communication, and many more.
AB - Metasurfaces are artificially engineered ultrathin photonic components that can be freely designed to exhibit unprecedented capabilities of highly-efficient electromagnetic wave manipulation. The ever-growing demand for miniaturized photonic devices for emerging applications, like imaging, spectroscopy, biosensing, and quantum information processing, consistently requires broadband multifunctional and highly-efficient meta-devices. Recent years have witnessed tremendous advancements in metasurfaces; however, investigating the novel platform to realize broadband metasurfaces that integrate multiple functionalities in a singlelayered structure would be an obvious technological extension. Here, we present a broadband single-cell-driven multifunctional metasurface platform capable of manipulating electromagnetic waves over a wide range of visible wavelengths (475-650 nm). A lossless zinc sulfide material exhibiting a sufficiently large refractive index and negligible extension coefficient across the visible spectrum is exploited to demonstrate the state-of-the-art meta-devices. Furthermore, a well-known spin-decoupling technique is implemented to multiplex different optical phenomena into a single-cell-driven structure. For proof of the concept, we demonstrate two meta-devices that provide transverse and longitudinal splitting of different optical phenomena for the visible wavelengths. The presented zinc sulfide material and unique design philosophy to achieve broadband multifunctional meta-devices may find potential applications in polarization and dispersion analyzers, sensing, optical communication, and many more.
UR - http://www.scopus.com/inward/record.url?scp=85149187365&partnerID=8YFLogxK
U2 - 10.1364/OME.481167
DO - 10.1364/OME.481167
M3 - Article
AN - SCOPUS:85149187365
SN - 2159-3930
VL - 13
SP - 575
EP - 585
JO - OPTICAL MATERIALS EXPRESS
JF - OPTICAL MATERIALS EXPRESS
IS - 3
ER -