Abstract
Chemical vapour deposition (CVD) represents a cheap and versatile method to produce carbon nanostructures. Here we present how we by using a standard CVD setup together with Pd nano particles as a catalyst can produce helical fibers with very periodic pitch, helicity, and narrow diameter distribution. The C 60 supported Pd catalyst particles are produced by a wet chemistry process and applied to silicon substrates. By raising the growth temperature from 550 °C to 800 °C we can tune the growth products from helical carbon fibers to straight hollow carbon fibers and finally to carbon nanotubes at the highest temperatures. In the intermediate temperature region of 650 °C a mixture of all three components appears. At 550 °C the efficiency of the process is optimized by the amount of water during the growth. Different from most previous studies we can detect most of the catalyst particles embedded in the grown structures. In all fibers the catalyst particles are situated exactly in the middle of the fibers suggesting a two-directional growth. From the shape of the catalyst particles and by adopting a simple model we conclude that the fibers coil due to blocked carbon diffusion pathways on or through the catalyst particles.
Original language | English (US) |
---|---|
Pages (from-to) | 1101-1107 |
Number of pages | 7 |
Journal | Carbon |
Volume | 49 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2011 |
ASJC Scopus subject areas
- General Chemistry
- General Materials Science