Abstract
Background: Hawksbill turtles (Eretmochelys imbricata) are Critically Endangered throughout their global range, and concerningly little is known about this species in the Red Sea. With large-scale coastal development projects underway in the northern Red Sea, it is critical to understand the movement and habitat use patterns of hawksbill turtles in this environmentally unique region, so that effective conservation strategies can be implemented. We satellite tagged three hawksbill turtles, one 63 cm curved carapace length adult male captured near Wahlei Island, one 55 cm turtle captured in the Gulf of Aqaba, and one 56 cm turtle suffering from a floating syndrome which was captured at Waqqadi Island, rehabilitated, and released at Waqqadi Island. Turtles were tracked for 156, 199, and 372 days between October 2020 and November 2021. Results: We calculated the home ranges and core use areas of hawksbill turtles using kernel-density estimations and found that each turtle showed high fidelity to their foraging sites. Home ranges calculated with GPS-derived locations ranged between 13.6 and 2.86 km2, whereas home ranges calculated with Argos-derived locations ranged from 38.98 to 286.45 km2. GPS-derived locations also revealed a higher proportion of time spent in coral and rock habitats compared to Argos, based on location overlap with the Allen Coral Reef Atlas. We also found that turtles were making shallow dives, usually remaining between 0 and 5 m. Conclusions: While the number of tracked turtles in this study was small, it represents an important contribution to the current understanding of spatial ecology among foraging hawksbill turtles globally, and provides the first-ever reported hawksbill turtle tracking data from the Red Sea. Our results suggest that protecting coral reef habitats and implementing boating speed limits near reefs could be effective conservation measures for foraging hawksbill turtles in the face of rapid coastal development.
Original language | English (US) |
---|---|
Article number | 1 |
Journal | Animal Biotelemetry |
Volume | 11 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2023 |
Keywords
- Conservation
- Eretmochelys imbricata
- Habitat use
- Home range
- Telemetry
ASJC Scopus subject areas
- Signal Processing
- Animal Science and Zoology
- Instrumentation
- Computer Networks and Communications