TY - GEN
T1 - Catalytic combustion of natural gas over supported platinum
T2 - ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, GT 1996
AU - Bond, Tani C.
AU - Noguchi, Ryan A.
AU - Chou, Chen Pang
AU - Mongia, Rajiv K.
AU - Chen, Jyh Yuan
AU - Dibble, Robert W.
N1 - Publisher Copyright:
Copyright © 1996 by ASME.
PY - 1996
Y1 - 1996
N2 - The use of a noble-met al combustion catalyst such as platinum or palladium in a natural-gas fired turbine can lower NOx, (nitrogen oxides, consisting of both NO and NO2) emissions for two reasons. First, most of the combustion occurs on the catalyst surface; surface production of NOx, is low or nonexistent. Second, the catalyst permits low temperature combustion below the traditional lean limit, thus inhibiting NOx, formation routes in the gas phase. Due to the complexity of the catalytic combustion process, the catalyst has traditionally been modeled as a "black box" that produces a desired amount of fuel conversion. While this approach has been useful for proof-of-concept studies, we expect practical applications to emerge from a greater understanding of the details of the catalytic combustion process. We have constructed . a numerical model of catalytic aorabustion based on the well-accepted CHEMKDI chemical kinetics formalism for gas-phase and surface chemistry. To support the model development, we built a research combustor. We present mea:sured and modeled axial profiles of temperature, fuel conversion, and pollutant emissions for natural-gas combtistion over platinum catalysts supported on ceramic honeycomb monoliths. NOx, emissions are below 1 ppm, and CO is observed at ppm levels. The data are taken at several lean equivalence ratios and flow rates. Fuel conversion rates occur in two regimes: a low, constant conversion rate and a higher conversion rate that increasei linearly with equivalence ratio. The agreement of the numerical model with the measured data is good at temperatures below 900 K; above this temperature, fuel conversion is underpredicted by as much as a factor of two. The predicted surface ignition temperatures agree well with the measured values. Results from the numerical model indicate that the fractional conversion rate of fuel has a linear dependence on the fraction of available surface reaction sites.
AB - The use of a noble-met al combustion catalyst such as platinum or palladium in a natural-gas fired turbine can lower NOx, (nitrogen oxides, consisting of both NO and NO2) emissions for two reasons. First, most of the combustion occurs on the catalyst surface; surface production of NOx, is low or nonexistent. Second, the catalyst permits low temperature combustion below the traditional lean limit, thus inhibiting NOx, formation routes in the gas phase. Due to the complexity of the catalytic combustion process, the catalyst has traditionally been modeled as a "black box" that produces a desired amount of fuel conversion. While this approach has been useful for proof-of-concept studies, we expect practical applications to emerge from a greater understanding of the details of the catalytic combustion process. We have constructed . a numerical model of catalytic aorabustion based on the well-accepted CHEMKDI chemical kinetics formalism for gas-phase and surface chemistry. To support the model development, we built a research combustor. We present mea:sured and modeled axial profiles of temperature, fuel conversion, and pollutant emissions for natural-gas combtistion over platinum catalysts supported on ceramic honeycomb monoliths. NOx, emissions are below 1 ppm, and CO is observed at ppm levels. The data are taken at several lean equivalence ratios and flow rates. Fuel conversion rates occur in two regimes: a low, constant conversion rate and a higher conversion rate that increasei linearly with equivalence ratio. The agreement of the numerical model with the measured data is good at temperatures below 900 K; above this temperature, fuel conversion is underpredicted by as much as a factor of two. The predicted surface ignition temperatures agree well with the measured values. Results from the numerical model indicate that the fractional conversion rate of fuel has a linear dependence on the fraction of available surface reaction sites.
UR - http://www.scopus.com/inward/record.url?scp=84924007785&partnerID=8YFLogxK
U2 - 10.1115/96-GT-130
DO - 10.1115/96-GT-130
M3 - Conference contribution
AN - SCOPUS:84924007785
T3 - ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, GT 1996
BT - Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
PB - Web Portal ASME (American Society of Mechanical Engineers)
Y2 - 10 June 1996 through 13 June 1996
ER -