Catalytic combustion of natural gas over supported platinum: Flow reactor experiments and detailed numerical modeling

Tani C. Bond, Ryan A. Noguchi, Chen Pang Chou, Rajiv K. Mongia, Jyh Yuan Chen, Robert W. Dibble

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

The use of a noble-met al combustion catalyst such as platinum or palladium in a natural-gas fired turbine can lower NOx, (nitrogen oxides, consisting of both NO and NO2) emissions for two reasons. First, most of the combustion occurs on the catalyst surface; surface production of NOx, is low or nonexistent. Second, the catalyst permits low temperature combustion below the traditional lean limit, thus inhibiting NOx, formation routes in the gas phase. Due to the complexity of the catalytic combustion process, the catalyst has traditionally been modeled as a "black box" that produces a desired amount of fuel conversion. While this approach has been useful for proof-of-concept studies, we expect practical applications to emerge from a greater understanding of the details of the catalytic combustion process. We have constructed . a numerical model of catalytic aorabustion based on the well-accepted CHEMKDI chemical kinetics formalism for gas-phase and surface chemistry. To support the model development, we built a research combustor. We present mea:sured and modeled axial profiles of temperature, fuel conversion, and pollutant emissions for natural-gas combtistion over platinum catalysts supported on ceramic honeycomb monoliths. NOx, emissions are below 1 ppm, and CO is observed at ppm levels. The data are taken at several lean equivalence ratios and flow rates. Fuel conversion rates occur in two regimes: a low, constant conversion rate and a higher conversion rate that increasei linearly with equivalence ratio. The agreement of the numerical model with the measured data is good at temperatures below 900 K; above this temperature, fuel conversion is underpredicted by as much as a factor of two. The predicted surface ignition temperatures agree well with the measured values. Results from the numerical model indicate that the fractional conversion rate of fuel has a linear dependence on the fraction of available surface reaction sites.

Original languageEnglish (US)
Title of host publicationCoal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
PublisherWeb Portal ASME (American Society of Mechanical Engineers)
ISBN (Electronic)9780791878743
DOIs
StatePublished - 1996
Externally publishedYes
EventASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, GT 1996 - Birmingham, United Kingdom
Duration: Jun 10 1996Jun 13 1996

Publication series

NameASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, GT 1996
Volume3

Other

OtherASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, GT 1996
Country/TerritoryUnited Kingdom
CityBirmingham
Period06/10/9606/13/96

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Fuel Technology
  • Nuclear Energy and Engineering
  • Aerospace Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Catalytic combustion of natural gas over supported platinum: Flow reactor experiments and detailed numerical modeling'. Together they form a unique fingerprint.

Cite this