TY - JOUR
T1 - Cellulose hollow fibers for organic resistant nanofiltration
AU - Falca, Gheorghe
AU - Musteata, Valentina-Elena
AU - Behzad, Ali Reza
AU - Chisca, Stefan
AU - Nunes, Suzana Pereira
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): REP/1/3848-01-01, URF/1/3441-01-01
Acknowledgements: The work was sponsored by the King Abdullah University of Science and Technology, grant REP/1/3848-01-01 and URF/1/3441-01-01.
PY - 2019/5/8
Y1 - 2019/5/8
N2 - Cellulose is the most abundant biopolymer, but it is difficult to process due to its low solubility in most of the solvents. In this work, we demonstrate the preparation, of self-standing and defect-free cellulose hollow fiber membranes made by a sustainable process for filtration in organic solvent medium. The hollow fibers were made by the simple spinning technique using ionic liquids as a solvent. The spun solutions were prepared with three different ionic liquids, having imidazolium-based cations and acetate or phosphates as anions. We used X-ray diffraction to evaluate the influence of the different ionic liquids on the crystallinity of the cellulose and the membrane solvent stability. We used cryo-scanning electron microscopy to investigate the porous structure of the hydrated membranes, distinguishing it from that of the dry membranes. The hollow fiber membrane performance was studied using dyes in water and ethanol solutions. The rejection of Congo Red (696 g mol−1) was higher than 90% in ethanol and even closer to 100% in water. The best results were obtained by using 1-ethyl-3-methyimidazolium diethyl phosphate and 1,3-dimethylimidazolium dimethyl phosphate. Our results indicate that by using greener process is possible to obtain solvent resistant cellulose hollow fibers.
AB - Cellulose is the most abundant biopolymer, but it is difficult to process due to its low solubility in most of the solvents. In this work, we demonstrate the preparation, of self-standing and defect-free cellulose hollow fiber membranes made by a sustainable process for filtration in organic solvent medium. The hollow fibers were made by the simple spinning technique using ionic liquids as a solvent. The spun solutions were prepared with three different ionic liquids, having imidazolium-based cations and acetate or phosphates as anions. We used X-ray diffraction to evaluate the influence of the different ionic liquids on the crystallinity of the cellulose and the membrane solvent stability. We used cryo-scanning electron microscopy to investigate the porous structure of the hydrated membranes, distinguishing it from that of the dry membranes. The hollow fiber membrane performance was studied using dyes in water and ethanol solutions. The rejection of Congo Red (696 g mol−1) was higher than 90% in ethanol and even closer to 100% in water. The best results were obtained by using 1-ethyl-3-methyimidazolium diethyl phosphate and 1,3-dimethylimidazolium dimethyl phosphate. Our results indicate that by using greener process is possible to obtain solvent resistant cellulose hollow fibers.
UR - http://hdl.handle.net/10754/656228
UR - https://www.sciencedirect.com/science/article/pii/S0376738819305290
UR - http://www.scopus.com/inward/record.url?scp=85066238456&partnerID=8YFLogxK
U2 - 10.1016/j.memsci.2019.05.009
DO - 10.1016/j.memsci.2019.05.009
M3 - Article
SN - 0376-7388
VL - 586
SP - 151
EP - 161
JO - Journal of Membrane Science
JF - Journal of Membrane Science
ER -