Certified adversarial robustness with additive noise

Bai Li, Changyou Chen, Wenlin Wang, Lawrence Carin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

167 Scopus citations

Abstract

The existence of adversarial data examples has drawn significant attention in the deep-learning community; such data are seemingly minimally perturbed relative to the original data, but lead to very different outputs from a deep-learning algorithm. Although a significant body of work on developing defensive models has been considered, most such models are heuristic and are often vulnerable to adaptive attacks. Defensive methods that provide theoretical robustness guarantees have been studied intensively, yet most fail to obtain non-trivial robustness when a large-scale model and data are present. To address these limitations, we introduce a framework that is scalable and provides certified bounds on the norm of the input manipulation for constructing adversarial examples. We establish a connection between robustness against adversarial perturbation and additive random noise, and propose a training strategy that can significantly improve the certified bounds. Our evaluation on MNIST, CIFAR-10 and ImageNet suggests that the proposed method is scalable to complicated models and large data sets, while providing competitive robustness to state-of-the-art provable defense methods.
Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems
PublisherNeural information processing systems foundation
StatePublished - Jan 1 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'Certified adversarial robustness with additive noise'. Together they form a unique fingerprint.

Cite this