TY - JOUR
T1 - Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong
AU - Ho, K. F.
AU - Lee, S. C.
AU - Chan, Chak K.
AU - Yu, Jimmy C.
AU - Chow, Judith C.
AU - Yao, X. H.
N1 - Generated from Scopus record by KAUST IRTS on 2023-07-06
PY - 2003/1/1
Y1 - 2003/1/1
N2 - Aerosol samples for PM10 and PM2.5 were collected in wintertime from November 2000 to February 2001 at three different sampling locations in Hong Kong. PM10 and PM2.5 were collected by high-volume (hi-vol.) samplers and the concentrations of major elements, ions, organic and elemental carbons were quantified. The ratios of PM2.5/PM10 were 0.61 and 0.78 at the PolyU campus and Kwun Tong (KT), respectively. These results indicated that the concentrations of PM2.5 contribute the majority of the PM10 fraction. The concentrations of anthropogenic species (e.g. Pb and Cu) in PM10 and PM2.5measured at urban areas were generally higher than at an urban background site (Hok Tsui, HT). The major fractions of sulfate at three monitoring sites are non-sea-salts (nss) sulfates. Although HT is located in coastal areas, the contribution of sea salts to sulfate in fine particles was small, indicating a substantial anthropogenic origin. The OC/EC ratios were less than 2 in PolyU and KT monitoring stations for PM10 and PM2.5. However, the OC/EC ratios were over 3 at HT for both PM10 and PM2.5. This indicates the presence of secondary organic aerosols. Correlations between OC and EC as well as OC and sulfate in HT during both seasons were used to prove that atmospheric transport and transformation of anthropogenic organic species from northeastern area was the dominant source in winter. The chemical composition of the samples was reconstructed from the observed elemental composition. The contribution of the seven components, namely crustal matter, sea salt, ammonium, sulfate, nitrate, elemental carbon and organic matter accounted for 77-84% of the PM10 and PM2.5 mass in the urban area (PolyU and KT) and 74% for Hok Tsui (HT). Sulfate, organic matter and elemental carbon are the major constituents in particles especially in PM2.5 collected at PolyU and KT. The major constituents of PM10 in HT are sea salt and sulfate. © 2002 Elsevier Science Ltd. All rights reserved.
AB - Aerosol samples for PM10 and PM2.5 were collected in wintertime from November 2000 to February 2001 at three different sampling locations in Hong Kong. PM10 and PM2.5 were collected by high-volume (hi-vol.) samplers and the concentrations of major elements, ions, organic and elemental carbons were quantified. The ratios of PM2.5/PM10 were 0.61 and 0.78 at the PolyU campus and Kwun Tong (KT), respectively. These results indicated that the concentrations of PM2.5 contribute the majority of the PM10 fraction. The concentrations of anthropogenic species (e.g. Pb and Cu) in PM10 and PM2.5measured at urban areas were generally higher than at an urban background site (Hok Tsui, HT). The major fractions of sulfate at three monitoring sites are non-sea-salts (nss) sulfates. Although HT is located in coastal areas, the contribution of sea salts to sulfate in fine particles was small, indicating a substantial anthropogenic origin. The OC/EC ratios were less than 2 in PolyU and KT monitoring stations for PM10 and PM2.5. However, the OC/EC ratios were over 3 at HT for both PM10 and PM2.5. This indicates the presence of secondary organic aerosols. Correlations between OC and EC as well as OC and sulfate in HT during both seasons were used to prove that atmospheric transport and transformation of anthropogenic organic species from northeastern area was the dominant source in winter. The chemical composition of the samples was reconstructed from the observed elemental composition. The contribution of the seven components, namely crustal matter, sea salt, ammonium, sulfate, nitrate, elemental carbon and organic matter accounted for 77-84% of the PM10 and PM2.5 mass in the urban area (PolyU and KT) and 74% for Hok Tsui (HT). Sulfate, organic matter and elemental carbon are the major constituents in particles especially in PM2.5 collected at PolyU and KT. The major constituents of PM10 in HT are sea salt and sulfate. © 2002 Elsevier Science Ltd. All rights reserved.
UR - https://linkinghub.elsevier.com/retrieve/pii/S135223100200804X
UR - http://www.scopus.com/inward/record.url?scp=0037207648&partnerID=8YFLogxK
U2 - 10.1016/S1352-2310(02)00804-X
DO - 10.1016/S1352-2310(02)00804-X
M3 - Article
SN - 1352-2310
VL - 37
SP - 31
EP - 39
JO - Atmospheric Environment
JF - Atmospheric Environment
IS - 1
ER -