Characterization of the dynamical response of a micromachined G-sensor to mechanical shock loading

Daniel E. Jordy, Mohammad I. Younis

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Squeeze film damping has a significant effect on the dynamic response of MEMS devices that employ perforated microstructures with large planar areas and small gap widths separating them from the substrate. Perforations can alter the effect of squeeze film damping by allowing the gas underneath the device to easily escape, thereby lowering the damping. By decreasing the size of the holes, the damping increases and the squeeze film damping effect increases. This can be used to minimize the out-of-plane motion of the microstructures toward the substrate, thereby minimizing the possibility of contact and stiction. This paper aims to explore the use of the squeeze-film damping phenomenon as a way to mitigate shock and minimize the possibility of stiction and failure in this class of MEMS devices. As a case study, we consider a G-sensor, which is a sort of a threshold accelerometer, employed in an arming and fusing chip. We study the effect of changing the size of the perforation holes and the gap width separating the microstructure from the substrate. We use a multi-physics finite-element model built using the software ANSYS. First, a modal analysis is conducted to calculate the out-of-plane natural frequency of the G-sensor. Then, a squeeze-film damping finite-element model, for both the air underneath the structure and the flow of the air through the perforations, is developed and utilized to estimate the damping coefficients for several hole sizes. Results are shown for various models of squeeze-film damping assuming no holes, large holes, and assuming a finite pressure drop across the holes, which is the most accurate way of modeling. The extracted damping coefficients are then used in a transient structural-shock analysis. Finally, the transient shock analysis is used to determine the shock loads that induce contacts between the G-sensor and the underlying substrate. It is found that the threshold of shock to contact the substrate has increased significantly when decreasing the holes size or the gap width, which is very promising to help mitigate stiction in this class of devices, thereby improving their reliability.

Original languageEnglish (US)
Title of host publication21st Biennial Conference on Mechanical Vibration and Noise
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages913-921
Number of pages9
ISBN (Print)0791848027, 0791848027, 9780791848029, 9780791848029
DOIs
StatePublished - 2008
Externally publishedYes
Event21st Biennial Conference on Mechanical Vibration and Noise, presented at - 2007 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2007 - Las Vegas, NV, United States
Duration: Sep 4 2007Sep 7 2007

Publication series

Name2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007
Volume1 PART B

Other

Other21st Biennial Conference on Mechanical Vibration and Noise, presented at - 2007 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2007
Country/TerritoryUnited States
CityLas Vegas, NV
Period09/4/0709/7/07

ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Mechanical Engineering
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Characterization of the dynamical response of a micromachined G-sensor to mechanical shock loading'. Together they form a unique fingerprint.

Cite this