TY - JOUR
T1 - Charge carrier transport and nanomorphology control for efficient non-fullerene organic solar cells
AU - Hu, Hanlin
AU - Deng, Wanyuan
AU - Qin, Minchao
AU - Yin, Hang
AU - Lau, Tsz-Ki
AU - Fong, Patrick W.K.
AU - Ren, Zhiwei
AU - Liang, Qiong
AU - Cui, Li
AU - Wu, Hongbin
AU - Lu, Xinhui
AU - Zhang, Weimin
AU - McCulloch, Iain
AU - Li, Gang
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was supported by Shenzhen Science and Technology Innovation Commission (Project No. JCYJ20170413154602102), Research Grants Council of Hong Kong (Grant No. 15246816, and 15218517), the Project of Strategic Importance provided by the Hong Kong Polytechnic University (Project No. 1-ZE29). W.Z acknowledges financial support from National Natural Science Foundation of China (21464003). X.L thanks Research Grant Council of Hong Kong (General Research Fund No. 14314216). H.W is grateful of National Natural Science Foundation of China (No. 51521002 and 61775061) for the financial support.
PY - 2019/4/17
Y1 - 2019/4/17
N2 - Single junction organic photovoltaic devices (OPVs) have exceeded 15% power conversion efficiency (PCE) with the help of fused ring based low-bandgap non-fullerene acceptors (NFAs). As a major type of NFA, the indacenodithiophene derivative NFA (IDTBR) has been shown to have superior OPV stability with outstanding VOC, but the efficiency is relatively lower compared to the reported OPV champion devices. Further improvements towards high efficiencies in this OPV system remains challenging due to the relatively poor charge carrier transport properties in the bulk heterojunction film, particularly the electron transport in small molecule non-fullerene acceptor network. Here we conducted detailed study on the dependence of carrier transport on BHJ donor–acceptor (D–A) composition. Our results show that the nano-morphology or phase aggregation of non-fullerene acceptor (NFA) molecules can be tuned via D–A composition in bulk heterojunction layer, and the improvement of electron mobility was shown to be enhanced by almost one order – from 1.23 × 10−6 cm2/V (D:A = 1:1 by weight) to 1.02 × 10−5 cm2/V (D:A = 1:2) – due to the improved connectivity of electron transport pathways. Further increase of NFA component content, however, has led to over-sized phase segregation, deteriorating the photovoltaic performance of organic soar cells. The optimized BHJ cell shows more balanced charge carrier transport and phase segregation, which yields a PCE of 10.79%. Furthermore, it shows a VOC as high as 1.03 V, which is ascribed to the significantly suppressed radiative and non-radiative recombination losses with bandgap-VOC offset Eg/q-VOC of only 0.55 V.
AB - Single junction organic photovoltaic devices (OPVs) have exceeded 15% power conversion efficiency (PCE) with the help of fused ring based low-bandgap non-fullerene acceptors (NFAs). As a major type of NFA, the indacenodithiophene derivative NFA (IDTBR) has been shown to have superior OPV stability with outstanding VOC, but the efficiency is relatively lower compared to the reported OPV champion devices. Further improvements towards high efficiencies in this OPV system remains challenging due to the relatively poor charge carrier transport properties in the bulk heterojunction film, particularly the electron transport in small molecule non-fullerene acceptor network. Here we conducted detailed study on the dependence of carrier transport on BHJ donor–acceptor (D–A) composition. Our results show that the nano-morphology or phase aggregation of non-fullerene acceptor (NFA) molecules can be tuned via D–A composition in bulk heterojunction layer, and the improvement of electron mobility was shown to be enhanced by almost one order – from 1.23 × 10−6 cm2/V (D:A = 1:1 by weight) to 1.02 × 10−5 cm2/V (D:A = 1:2) – due to the improved connectivity of electron transport pathways. Further increase of NFA component content, however, has led to over-sized phase segregation, deteriorating the photovoltaic performance of organic soar cells. The optimized BHJ cell shows more balanced charge carrier transport and phase segregation, which yields a PCE of 10.79%. Furthermore, it shows a VOC as high as 1.03 V, which is ascribed to the significantly suppressed radiative and non-radiative recombination losses with bandgap-VOC offset Eg/q-VOC of only 0.55 V.
UR - http://hdl.handle.net/10754/653048
UR - https://www.sciencedirect.com/science/article/pii/S2468606918303708
UR - http://www.scopus.com/inward/record.url?scp=85064252139&partnerID=8YFLogxK
U2 - 10.1016/j.mtener.2019.04.005
DO - 10.1016/j.mtener.2019.04.005
M3 - Article
SN - 2468-6069
VL - 12
SP - 398
EP - 407
JO - Materials Today Energy
JF - Materials Today Energy
ER -