Abstract
A novel engineering approach on cross-linking modification of polyimide hollow-fiber membranes is reported. The concept is demonstrated using a dual-layer hollow-fiber membrane structure, where a polyimide {copoly[1,4-durene/1,3-phenylene-2,2-bis(3,4-dicarboxyphenyl) hexafluoropropanediimide] (6FDA-durene/mPDA) (50:50)} is chosen as the outer layer and poly(ether sulfone) (PES) is selected as the inner layer. Chemical cross-linking modification occurs at the outer polyimide layer by immersing the dual-layer hollow fibers in a 5% (w/v) p-xylenediamine/methanol solution at ambient temperature for a short period of time. Fourier transform infrared studies show that chemical cross-linking modification takes place by the formation of amide groups through the reactions between p-xylenediamine and imide groups. The PES inner layer is found to be immune from the proposed chemical cross-linking modification and remains porous and flexible as a supporting layer. Pure gas tests show that chemical cross-linking modification of dual-layer hollow fibers results in a reduction in permeance but significantly enhances the CO2/N2 and especially CO2/CH4 selectivities. The proposed chemical cross-linking modification also makes the polymer more resistant to plasticization and thus reduces the CO2-induced increase in gas permeance.
Original language | English (US) |
---|---|
Pages (from-to) | 1190-1195 |
Number of pages | 6 |
Journal | Industrial and Engineering Chemistry Research |
Volume | 42 |
Issue number | 6 |
DOIs | |
State | Published - Mar 19 2003 |
Externally published | Yes |
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering
- Industrial and Manufacturing Engineering