Chemical Solution Deposition of Epitaxial Indium- and Aluminum-Doped Ga2O3 Thin Films on Sapphire with Tunable Bandgaps

Xiao Tang, Kuang-Hui Li, Che-Hao Liao, Jose Manuel Taboada Vasquez, Chuanju Wang, Na Xiao, Xiaohang Li

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Compared to the vacuum-required deposition techniques, the chemical solution deposition (CSD) technique is superior in terms of low cost and ease of cation adjustment and upscaling. In this work, highly epitaxial indium- and aluminum-doped Ga2O3 thin films are deposited using a novel CSD technique. The 2θ, rocking curve, and φ-scan modes of x-ray diffraction (XRD) measurements and high-resolution transmission electron microscopy suggest that these thin films have a pure beta phase with good in- and out-of-plane crystallization qualities. The effect of incorporating indium and aluminum into the crystallization process is studied using high-temperature in situ XRD measurements. The results indicate that indium and aluminum doping can shift the crystallization of the thin films to lower and higher temperatures, respectively. Additionally, ultraviolet-visible spectroscopy measurements indicate that the bandgap of the sintered thin films can be tuned from 4.05 to 5.03 eV using a mixed precursor solution of In:Ga = 3:7 and Al:Ga = 3:7. The photodetectors based on the (InGa)2O3, pure Ga2O3, and (AlGa)2O3 samples exhibit the maximum photocurrents at 280, 255, and 230 nm, respectively. The results suggest that the described CSD technique is promising for producing high-quality bandgap tunable deep-ultraviolet photoelectrical and high-power devices.
Original languageEnglish (US)
JournalJournal of the European Ceramic Society
DOIs
StatePublished - Oct 2 2021

ASJC Scopus subject areas

  • Materials Chemistry
  • Ceramics and Composites

Fingerprint

Dive into the research topics of 'Chemical Solution Deposition of Epitaxial Indium- and Aluminum-Doped Ga2O3 Thin Films on Sapphire with Tunable Bandgaps'. Together they form a unique fingerprint.

Cite this