Abstract
Monolithic columns for chiral capillary electrochromatography have been prepared within the confines of untreated fused-silica capillaries in a single step by a simple copolymerization of mixtures of O-[2-(methacryloyloxy)ethyl-carbamoyl]-10,11-dihydroquinidine, ethylene dimethacrylate, and glycidyl methacrylate or 2-hydroxyethyl methacrylate in the presence of mixture of cyclohexanol and 1-dodecanol as a porogenic solvent. The porous properties of the monolithic columns can easily be controlled through changes in the composition of the binary porogenic solvent. Although both thermal- and UV light-initiated polymerizations afford useful capillary columns, monoliths prepared using the former approach exhibit better chromatographic properties. The ability to control pore size independently of the polymerization mixture composition enables the preparation of monoliths with varying percentages of the chiral monomer and cross-linker, as well as the optimization of their separation properties. Very good separations of model racemate (R,S)-N-3,5-dinitrobenzoylleucine were achieved using an optimized monolithic CEC column, with high efficiencies of up to 74 000 plates/m for the retained peaks.
Original language | English (US) |
---|---|
Pages (from-to) | 4614-4622 |
Number of pages | 9 |
Journal | ANALYTICAL CHEMISTRY |
Volume | 72 |
Issue number | 19 |
DOIs | |
State | Published - Oct 1 2000 |
Externally published | Yes |
ASJC Scopus subject areas
- Analytical Chemistry